1. Y. A. Abramovich, C. D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, Providence, (2002).
2. C. D. Aliprantis, O. Burkinshaw, Positive operators, Springer Science & Business Media, (2006).
3. A. Bahramnezhad, K. Haghnejad Azar, Unbounded order continuous operators on Riesz spaces, Positivity, 22, 837–843 (2018).
4. Y. Deng, M. O’Brien, V. G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity, 21, 963–974 (2017).
5. R. Demarr, Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math., 8, 601–606 (1964).
6. N. Gao, Unbounded order convergence in dual spaces, J. Math. Anal. Appl., 419(1), 347–354 (2014).
7. N. Gao, V. G. Troitsky, F. Xanthos, Uo-convergence and its aplications to cesaro means in Banach lattices, Israel J. Math., 220, 649–689 (2017).
8. K. Haghnejad Azar, M. Matin, R. Alavizadeh, Unbounded order-norm continuous and unbounded norm continuous operators, Filomat, 35(13), 4417–4426 (2021).
9. A. Jalili, K. Haghnejad, M. Moghimi, Order-to-topology continuous operators, Positivity, 25(2), 1–10, (2021).
10. M. Kandic, M. A. A. Marabeh, V. G. Troitsky, Unbounded norm topology in Banach lattices, J. Math. Anal. Appl., 451, 259–279 (2017).
11. H. Nakano, Ergodic theorems in semi-ordered linear spaces, Ann. Math., 49(3), 538–556 (1948).
12. B. Turan, B. Altin, H. Gürkök, On unbounded order continuous operators. Turkish Journal of Mathematics, 46, 3391–3399 (2022).
13. A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, J. Austral. Math. Soc. Ser. A, 24, 312–319 (1977).