Nonlinear Eigenvalue Methods for Quantifying Quantum Entanglement

Document Type : Research Article

Authors

1 Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India

2 Department of Physics, University of Kashmir, Srinagar 190006, India

3 Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Abstract

We present a hybrid analytical numerical method to evaluate the geometric measure of entanglement for pure multipartite states by formulating the closest separable state problem as a coupled nonlinear eigenvalue condition. We develop a hybrid analytical numerical framework in which a formal perturbative linearization around a reference product state is combined with an iterative fixed-point scheme. The approach combines a Gauss-Seidel block fixed-point iteration with a controlled first order linearization about a stationary reference product state. The perturbative analysis provides local structural insight and initialization guidance, while the iterative method yields accurate numerical estimates of the geometric measure of entanglement. We make explicit and prove an equal multiplier stationarity identity showing that, at an optimum, all block Lagrange multipliers coincide and are fixed by the optimal fidelity to the target state. A normalization preserving linearization is obtained by projecting onto local tangent spaces, which yields an explicit first order correction and a corresponding scalar shift in the effective eigenvalue. We further establish a monotonic block ascent property: the overlap with the target state increases at every update, remains bounded, and converges to a stationary value. For standard three qubit benchmarks, the hybrid solver converges smoothly and reproduces the known exact optima for the GHZ and W states.

Keywords

Main Subjects


 

Article PDF

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Physical Review Letters, 70(13), 1895–1899, (1993).
[2] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on einstein-podolsky-rosen states, Physical Review Letters, 69(20), 2881–2884, (1992).
[3] A. K. Ekert, Quantum cryptography based on bell’s theorem, Physical Review Letters, 67(6), 661–663, (1991).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.
[5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Reviews of Modern Physics, 81(2), 865–942, (2009).
[6] M. B. Plenio and S. Virmani, An introduction to entanglement measures, Quantum Info. Comput., 7(1), 151, Jan. 2007.
[7] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying entanglement, Physical Review Letters, 78(12), 2275–2279, (1997).
[8] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters, 80(10), 2245–2248, (1998).
[9] G. Vidal and R. F. Werner, Computable measure of entanglement, Physical Review A, 65(3), 032314, (2002).
[10] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Physical Review A, 54(5), 3824–3851, (1996).
[11] V. Vedral, The role of relative entropy in quantum information theory, Reviews of Modern Physics, 74(1), 197–234, (2002).
[12] A. Shimony, Degree of entanglement, 755, 675–679, (1995).
[13] T.-C. Wei and P. M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states, Physical Review A, 68(4), 042307, (2003).
[14] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Reviews of Modern Physics, 89(4), 041003, (2017).
[15] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem, IEEE Transactions on Information Theory, 48(10), 2637–2655, (2002).
[16] S. Weinberg, Testing quantum mechanics, Annals of Physics, 194(2), 336–386, (1989).
[17] R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, 349, 117–158, (2014).
[18] H. Barnum and N. Linden, Monotones and invariants for multi-particle quantum states, Journal of Physics A: Mathematical and General, 34(35), 6787–6805, (2001).
[19] O. Gühne and G. Tóth, Entanglement detection, Physics Reports, 474(1-6), 1–75, (2009).
[20] F. G. S. L. Brandão and R. O. Vianna, Separable multipartite mixed states: Operational asymptotically necessary and sufficient conditions, 93, 220503, 11 2004.
[21] T. Betcke, N. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, Nlevp: A collection of nonlinear eigenvalue problems, 39, 01 2011.
[22] M. B. Plenio and S. Virmani, An introduction to entanglement measures, Quantum Inf. Comput., (2006).
[23] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, 62, 062314, (2000).
[24] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, vol. 3 of Princeton Lectures in Analysis. Princeton University Press, 2005. 
Volume 10, Issue 2
December 2025
Pages 300-313
  • Receive Date: 11 November 2025
  • Revise Date: 30 December 2025
  • Accept Date: 30 December 2025
  • Publish Date: 30 December 2025