[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Physical Review Letters, 70(13), 1895–1899, (1993).
[2] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on einstein-podolsky-rosen states, Physical Review Letters, 69(20), 2881–2884, (1992).
[3] A. K. Ekert, Quantum cryptography based on bell’s theorem, Physical Review Letters, 67(6), 661–663, (1991).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.
[5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Reviews of Modern Physics, 81(2), 865–942, (2009).
[6] M. B. Plenio and S. Virmani, An introduction to entanglement measures, Quantum Info. Comput., 7(1), 151, Jan. 2007.
[7] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying entanglement, Physical Review Letters, 78(12), 2275–2279, (1997).
[8] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters, 80(10), 2245–2248, (1998).
[9] G. Vidal and R. F. Werner, Computable measure of entanglement, Physical Review A, 65(3), 032314, (2002).
[10] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Physical Review A, 54(5), 3824–3851, (1996).
[11] V. Vedral, The role of relative entropy in quantum information theory, Reviews of Modern Physics, 74(1), 197–234, (2002).
[12] A. Shimony, Degree of entanglement, 755, 675–679, (1995).
[13] T.-C. Wei and P. M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states, Physical Review A, 68(4), 042307, (2003).
[14] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Reviews of Modern Physics, 89(4), 041003, (2017).
[15] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem, IEEE Transactions on Information Theory, 48(10), 2637–2655, (2002).
[16] S. Weinberg, Testing quantum mechanics, Annals of Physics, 194(2), 336–386, (1989).
[17] R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, 349, 117–158, (2014).
[18] H. Barnum and N. Linden, Monotones and invariants for multi-particle quantum states, Journal of Physics A: Mathematical and General, 34(35), 6787–6805, (2001).
[19] O. Gühne and G. Tóth, Entanglement detection, Physics Reports, 474(1-6), 1–75, (2009).
[20] F. G. S. L. Brandão and R. O. Vianna, Separable multipartite mixed states: Operational asymptotically necessary and sufficient conditions, 93, 220503, 11 2004.
[21] T. Betcke, N. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, Nlevp: A collection of nonlinear eigenvalue problems, 39, 01 2011.
[22] M. B. Plenio and S. Virmani, An introduction to entanglement measures, Quantum Inf. Comput., (2006).
[23] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, 62, 062314, (2000).
[24] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, vol. 3 of Princeton Lectures in Analysis. Princeton University Press, 2005.