[1] J. M. Maldacena, The large-N limit of superconformal field theories and supergravity, Advances in Theoretical and Mathematical Physics 2, 231252 (1998).
[2] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, QCD and a holographic model of hadrons, Physical Review Letters, 95, 261602 (2005).
[3] Sh. Mamedov, B.B. Sirvanli, I. Atayev, and N. Huseynova,Nucleon’s axial-vector form factor in the hard-wall AdS/QCD model Int. J. Theor. Phys., 54, 1861–1874 (2017).
[4] I. Atayev and Sh. Mamedov, Axial-Vector Form Factor of Nucleons in the Isospin Medium from the Hard-Wall AdS/QCD Model Int. J. Theor. Phys., 61, 250, (2022).
[5] Sh. Mamedov and Sh. Taghiyeva, a1 meson-nucleon coupling constant at finite temperature from the soft-wall AdS/QCD model Eur. Phys. J. C, 81, 1080 (2021).
[6] Sh. Mamedov and N. Nasibova, Temperature dependence of meson-nucleon coupling constant from the AdS/QCD soft-wall model Phys. Rev. D, 104, 036010, (2021).
[7] N. Huseynova and Sh. Mamedov, ρ meson-nucleon coupling constant from the soft-wall AdS/QCD model Int. J. Theor. Phys., 54, 3799, (2015).
[8] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nuclear Physics B, 721, 79–97 (2005).
[9] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Linear confinement and AdS/QCD, Physical Review D, 74, 015005, (2006).
[10] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Progress of Theoretical Physics, 113, 843–882, (2005).
[11] S. S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Physical Review D, 78, 086007, (2008).
[12] C. P. Herzog, A holographic prediction of the deconfinement temperature, Physical Review Letters, 98, 091601, (2007).
[13] T. Gherghetta, J. I. Kapusta, and T. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Physical Review D, 79, 076003, (2009).
[14] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis, and K. Tuominen, A holographic model for QCD in the Veneziano limit at finite temperature and density, Journal of High Energy Physics, 04, 124, (2014).
[15] M. Järvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, Journal of High Energy Physics, 03, 002, (2012).
[16] A. Cherman, T. D. Cohen, and E. S. Werbos, The chiral condensate in holographic models of QCD, Physical Review C, 79, 045203, (2009).
[17] E. Witten, Antide Sitter space and holography, Advances in Theoretical and Mathematical Physics, 2, 253–291, (1998).[18] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from non-critical string theory, Physics Letters B, 428, 105–114, (1998).
[19] K. Skenderis, Lecture notes on holographic renormalization, Classical and Quantum Gravity, 19, 5849–5876, (2002).
[20] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lectures in Mathematics and Theoretical Physics, 8, 73–101, (2007).
[21] J. R. Dormand and P. J. Prince, A family of embedded RungeKutta formulae, Journal of Computational and Applied Mathematics, 6, 19–26, (1980).
[22] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer, 1993.
[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, 2007.
[24] U. Gürsoy and E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, F. NittiImproved holographic QCD, Lect.Notes Phys., 828, 79–146, (2011).
[25] U. Gürsoy, E. Kiritsis, Exploring improved holographic theories for QCD: Part I, Journal of High Energy Physics, 0802, 032, (2008).
[26] R. Casero, E. Kiritsis, and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nuclear Physics B, 787, 98–134, (2007).
[27] P. K. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Physical Review Letters, 94, 111601, (2005).
[28] S. Aoki et al. (FLAG), FLAG Review 2019, European Physical Journal C, 80, 113, (2020).
[29] M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of current divergences under SU(3)×SU(3), Physical Review, 175, 2195–2199, (1968).