On Solving a Non-Linear Equation for the Quark Condensate Operator in Holographic QCD

Document Type : Research Article

Author

Institute for Physical Problems, Baku State University, Z.Khalilov 23, Baku, AZ 1148, Azerbaijan; Institute of Physics, Ministry of Science and Education, H.Javid 33, Baku, AZ 1143, Azerbaijan; Center for Theoretical Physics, Khazar University, 41 Mehseti Str., Baku, AZ1096, Azerbaijan

Abstract

We investigate the non-linear structure of an equation arising in the holographic description of strongly coupled QCD. Within the framework of the AdS/QCD correspondence, we analyze the equation of motion for a bulk scalar dual to the quark condensate operator. We present both analytical approximations and numerical solutions, and discuss their implications for chiral symmetry breaking and meson spectra. Our results highlight the importance of non-linearities in capturing dynamical features beyond the probe approximation.

Keywords

Main Subjects


 

Article PDF

[1] J. M. Maldacena, The large-N limit of superconformal field theories and supergravity, Advances in Theoretical and Mathematical Physics 2, 231252 (1998).
[2] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, QCD and a holographic model of hadrons, Physical Review Letters, 95, 261602 (2005).
[3] Sh. Mamedov, B.B. Sirvanli, I. Atayev, and N. Huseynova,Nucleon’s axial-vector form factor in the hard-wall AdS/QCD model Int. J. Theor. Phys., 54, 1861–1874 (2017).
[4] I. Atayev and Sh. Mamedov, Axial-Vector Form Factor of Nucleons in the Isospin Medium from the Hard-Wall AdS/QCD Model Int. J. Theor. Phys., 61, 250, (2022).
[5] Sh. Mamedov and Sh. Taghiyeva, a1 meson-nucleon coupling constant at finite temperature from the soft-wall AdS/QCD model Eur. Phys. J. C, 81, 1080 (2021).
[6] Sh. Mamedov and N. Nasibova, Temperature dependence of meson-nucleon coupling constant from the AdS/QCD soft-wall model Phys. Rev. D, 104, 036010, (2021).
[7] N. Huseynova and Sh. Mamedov, ρ meson-nucleon coupling constant from the soft-wall AdS/QCD model Int. J. Theor. Phys., 54, 3799, (2015).
[8] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nuclear Physics B, 721, 79–97 (2005).
[9] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Linear confinement and AdS/QCD, Physical Review D, 74, 015005, (2006).
[10] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Progress of Theoretical Physics, 113, 843–882, (2005).
[11] S. S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Physical Review D, 78, 086007, (2008).
[12] C. P. Herzog, A holographic prediction of the deconfinement temperature, Physical Review Letters, 98, 091601, (2007).
[13] T. Gherghetta, J. I. Kapusta, and T. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Physical Review D, 79, 076003, (2009).
[14] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis, and K. Tuominen, A holographic model for QCD in the Veneziano limit at finite temperature and density, Journal of High Energy Physics, 04, 124, (2014).
[15] M. Järvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, Journal of High Energy Physics, 03, 002, (2012).
[16] A. Cherman, T. D. Cohen, and E. S. Werbos, The chiral condensate in holographic models of QCD, Physical Review C, 79, 045203, (2009).
[17] E. Witten, Antide Sitter space and holography, Advances in Theoretical and Mathematical Physics, 2, 253–291, (1998).[18] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from non-critical string theory, Physics Letters B, 428, 105–114, (1998).
[19] K. Skenderis, Lecture notes on holographic renormalization, Classical and Quantum Gravity, 19, 5849–5876, (2002).
[20] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lectures in Mathematics and Theoretical Physics, 8, 73–101, (2007).
[21] J. R. Dormand and P. J. Prince, A family of embedded RungeKutta formulae, Journal of Computational and Applied Mathematics, 6, 19–26, (1980).
[22] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer, 1993.
[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, 2007.
[24] U. Gürsoy and E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, F. NittiImproved holographic QCD, Lect.Notes Phys., 828, 79–146, (2011).
[25] U. Gürsoy, E. Kiritsis, Exploring improved holographic theories for QCD: Part I, Journal of High Energy Physics, 0802, 032, (2008).
[26] R. Casero, E. Kiritsis, and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nuclear Physics B, 787, 98–134, (2007).
[27] P. K. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Physical Review Letters, 94, 111601, (2005).
[28] S. Aoki et al. (FLAG), FLAG Review 2019, European Physical Journal C, 80, 113, (2020).
[29] M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of current divergences under SU(3)×SU(3), Physical Review, 175, 2195–2199, (1968).