[1] A. Ataei, Existence and uniqueness of the solutions to Convection-Diffusion equations, arXiv preprint arXiv:2310.20269, (2023).
[2] A. Fick, On Liquid Diffusion, Philosophical Magazine and Journal of Science, 1855.
[3] C. C. Lee, Masashi Mizuno and Sang-Hyuck Moon On the uniqueness of linear convectiondiffusion equations with integral boundary conditions, 361, 191–206, (2023).
[4] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Mathematical Proceedings of the Cambridge Philosophical Society, 1947.
[5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Publisher: Springer, 2001. [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977.
[7] D. Khojasteh Salkuyeh, On the finite difference approximation to the convection-diffusion equation, Appl. Math Comput., 179, 79–86, (2006).
[8] F. S. V. Baz an, Department of Mathematics, Federal University of Santa Catarina, 88040-900-Chebyshev pseudospectral method for computing numerical.
[9] G. D. Smith, Numerical Solution of Partial Differential Equations, Oxford University Press, Oxford, 1990.
[10] H. N. A. Ismail, E. M. E. Elaraby, and G. S. E. Salem, Restrictive Taylors approximation for solving convection-diffusion equation, Appl. Math Comput., 147, 355–363, (2004).
[11] J. Crank, The Mathematics of Diffusion, Publisher: Oxford University Press, 1979.
[12] J. David Logan, Applied Partial Differential Equations, (Third Edition), Publisher: Springer, 2015.
[13] J. Fourier, The Analytical Theory of Heat, Cambridge University Press, 1878.
[14] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall, London, 1996.
[15] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, Publisher: Cambridge University Press, 2005.
[16] G. R. Liu and M.B Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, 2003.
[17] K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press, 2005.
[18] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving PDEs, Journal of Computational Physics, 2019.
[19] W. A. Strauss, Partial Differential Equations: An Introduction, Publisher: Wiley, 2008.
[20] W. Shy, Analytical and Numerical Methods for Convection-Diffusion Equations, Publisher: Oxford University Press, 1992.