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Abstract

In this paper, the approximation of the solution to the one-dimensional convection-diffusion equation is studied as a model for heat

transfer in a rectangular channel influenced by airflow. First, the convection-diffusion equation is derived using basic principles

of conservation, including convection and diffusion. Then, the existence and uniqueness of the solution to this equation are

briefly discussed, taking into account the properties of the convective and diffusive coefficients, boundary conditions, and initial

conditions. Numerical solution methods for the problem have been explored by researchers, leading to various approaches. As

examples, [7–10, 14] used the Chebyshev pseudo-spectral method for spatial discretization and the fourth-order Runge-Kutta

(RK4) method for temporal discretization to solve this equation. The numerical characteristics of this method, including accuracy,

stability, and convergence rate, are analyzed using eigenvalue analysis of the system and stability regions. The results obtained

include temperature distribution, absolute error, and a three-dimensional analysis of the temperature distribution in space and time.

Additionally, the impact of the time step on the stability of the numerical method has been investigated, and it is shown that

the proposed method can achieve desirable accuracy and stability with proper parameter adjustments. This study confirms the

effectiveness of the Chebyshev pseudo-spectral method in solving dynamic problems such as heat transfer and related applications

providing a foundation for using this method in more complex problems.

Keywords: Convection-Diffusion equation, Existence and uniqueness of solution, Chebyshev Pseudo-Spectral method, Numerical

accuracy and stability
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1 Introduction
Partial differential equations play a crucial role in modeling physical, chemical, and biological phenomena. Among these equations,

the convection-diffusion equation is of particular importance because it can describe the processes of mass, heat, or energy transfer in

various environments. This equation combines two fundamental transport mechanisms: convection (displacement) and diffusion (molecular

dispersion), and it has widespread applications in fluid dynamics, atmospheric flows, heat transfer, and even biomedicine. The precise

formulation of this equation requires an understanding of the fundamental principles of conservation and the analysis of transport flows.
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Moreover, the existence and uniqueness of solutions to partial differential equations is a fundamental topic in applied mathematics, ensuring

that modeling leads to stable and reliable solutions.

The analytical solution of the convection-diffusion equation is often challenging or even impossible due to its nonlinear nature and the

complexity of boundary conditions. Therefore, numerical methods have been proposed as powerful tools for solving these equations.

Numerical methods for approximating the solution of the convection-diffusion equation, due to its inherent complexities, such as the

interplay between the two processes with distinct characteristics, are often associated with challenges. One of the most important challenges

is numerical instability, which arises from the mismatch between time and spatial discretization methods. Additionally, in real-world

problems, there is a need for high accuracy in computing derivatives and reducing computational costs, which has led to the development

of more advanced methods for solving this equation. Initially, Fick (1855) introduced his law of diffusion, which forms the foundation for

modeling diffusion processes in various materials. This law states that the rate of diffusion of a substance depends on the concentration

gradient and is directly used in convection-diffusion equations [2]. In 1822, Fourier introduced the heat conduction equation, which provided

a framework for heat transfer in materials and later influenced the formulation of convection-diffusion equations. This equation, modeling

heat transfer in a solid body, became the basis for developing similar equations in other fields [13]. In the 1940s, Crank and Nicolson

introduced their semi-implicit numerical method for solving diffusion equations, which, due to its stability and high accuracy, was also

applied to solve convection-diffusion equations. This method allows for more accurate solutions of partial differential equations by reducing

numerical errors [4]. In 2005, Morton and Mayers presented analyses on the stability and convergence of numerical methods for solving

partial differential equations, including the convection-diffusion equation. They demonstrated how the choice of numerical methods and

boundary conditions can impact solution accuracy and stability [17].

In the realm of mathematical analysis, Gilbarg and Trudinger (1977) used Sobolev spaces and weak form methods to provide

proofs for the existence and uniqueness of solutions to partial differential equations, including the convection-diffusion equation. This

work became a foundation for more precise analyses in boundary and initial value problems [6]. In the 1990s, Shyy, in his book,

examined various numerical methods for solving convection-diffusion equations. During this period, stabilization methods and accurate

solutions for convection-dominated problems were developed, which were particularly useful in complex geometrical issues [20]. In

recent decades, numerical methods such as Meshfree Methods and Smoothed Particle Hydrodynamics (SPH) have been introduced to

solve convection-diffusion equations for problems with complex geometries [16]. These methods have found wide applications in solving

problems with intricate geometries and in numerical simulations in engineering.

Lastly, in recent years, machine learning and neural networks have gained attention for solving partial differential equations, particularly

convection-diffusion equations. These methods provide faster and more accurate solutions to complex problems using data-driven models

[18]. These advancements reflect significant progress in understanding and numerically solving the convection-diffusion equation, and

future research will continue to improve methods and algorithms for emerging problems.

In this research, the convection-diffusion equation is first derived based on physical principles, and then the conditions for the existence

and uniqueness of its solution are analyzed. Subsequently, using numerical methods such as the Chebyshev pseudo-spectral method, a

solution strategy for this equation is proposed, and the accuracy and stability of the method are examined. In recent years, spectral methods

have become one of the popular tools for the numerical solution of differential equations due to their high accuracy and rapid convergence

rates. Among these methods, the Chebyshev pseudo-spectral method, based on Chebyshev polynomials and Chebyshev nodes, performs

exceptionally well in approximating spatial derivatives. This method calculates the first and second derivatives with high accuracy using the

Chebyshev derivative matrix, making it highly suitable for problems with continuous boundaries and smooth conditions.

The objective of this paper is to provide a comprehensive framework for the mathematical and numerical analysis of the

convection-diffusion equation and to explore its applications in practical problems. Specifically, the heat diffusion equation in a rectangular

channel subjected to air flow is approximated using the Chebyshev pseudo-spectral method.

2 Problem Definition and Equation Derivation
In modeling phenomena involving the transfer of mass, heat, or any conserved quantity in a physical environment, the convection-diffusion

equation serves as a key tool. This equation is derived based on the principles of mass conservation and combines two fundamental processes:

diffusion (which depends on the concentration gradient) and convection (which depends on fluid motion). The primary objective is to derive

this equation from these fundamental principles (the law of conservation) and provide a framework for the initial and boundary conditions,
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which are essential for the analytical or numerical solution of the equation.

Theorem 1 (Law of Conservation of Mass (or Energy)). [5, 12, 19] Let C (x, t) be a scalar function that is discontinuous and dependent

on space x ∈ Ω ⊆ Rn and time t ≥ 0 .representing a quantity (such as concentration or temperature) in a physical system. If is a compact

region with boundary, the law of conservation of mass in its integral form is expressed as:

d
dt

∫
Ω
=−

∫
∂Ω

J ·nds+
∫

Ω
sdx,

where J is the fluxand and n is the unit normal vector to the boundary ∂Ω and S is the rate of generation or destruction of the quantity per

unit volume.

This law represents the balance of the quantity C inside the domain Ω considering both the influx/outflux through the boundary ∂Ω and any

sources or sinks inside the domain.

Lemma 1 (Differential Form of the Conservation Law). [5,12,19] By applying the Gauss-Divergence theorem, the law of conservation of

mass can be easily converted into its differential form:

S =
∂c
∂ t

+∇ · J,

where:

S represents the source term (rate of generation or destruction),
∂c
∂ t is the time rate of change of the quantity C,

∇ · J is the divergence of the flux J.

Theorem 2 (Modeling of Total Flux). [12, 19] Assume that the total flux J consists of two components:

Convective flux: Jconv = u ·C where u ∈ Rn is the fluid velocity vector.

Diffusive flux: Jdi f f =−D∇C where D is the diffusion coefficient and ∇C represents the gradient of C.

By combining these two, the total flux is defined as follows:

J = D∇C−uC.

Theorem 3 (Advection-Diffusion Equation). [5, 12, 19] By substituting into the mass conservation equation, the advection-diffusion

equation is derived as follows:

S =
∂c
∂ t

+∇ · (uC)−∇ · (D∇C).

Lemma 2 (Special Case). [5, 12, 19] If the fluid flow u is steady and incompressible (D · u) = 0, and D is assumed to be a homogeneous

and constant coefficient, the equation simplifies to:
∂c
∂ t

+u ·∇C = D ·∇2C+ s.

This is the simplified form of the advection-diffusion equation under these specific conditions.

Definition 1 (Definition of Boundaries and Initial Conditions). To solve this equation, the following boundary and initial conditions are

defined:

• Initial Condition: Specifies the concentration distribution at the initial time t = 0, C(x,0) = C0(x), where C0(x) is the given initial

concentration.

• Boundary Conditions: Depending on the physical problem, different types of boundary conditions can be applied:

– Dirichlet Condition: Specifies the concentration at the boundary:

C(x, t) =Cb(x, t), ∀x ∈ Ω.

– Neumann Condition: Specifies the flux at the boundary:

∂c
∂n

= h(x, t).
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– Robin Condition: A combination of Dirichlet and Neumann conditions:

ac+b
∂c
∂n

= h(x, t).

These conditions ensure a well-posed problem for solving the advection-diffusion equation.

3 Existence and Uniqueness of the Advection-Diffusion Equation
One of the fundamental aspects of analyzing partial differential equations (PDEs), such as the advection-diffusion equation, is examining

the conditions for the existence and uniqueness of solutions. This analysis ensures that the proposed mathematical model accurately

represents the behavior of the physical system. To achieve this, mathematical tools such as existence and uniqueness theorems (e.g.,

Banach’s fixed-point theorem or energy methods) are employed.

The objective of this section is to explore the necessary and sufficient conditions for the existence and uniqueness of the solution within

the framework of the advection-diffusion equation. This exploration considers the specific form of the equation, the problem domain, and

the boundary and initial conditions. Proving the existence and uniqueness of solutions for the advection-diffusion equation requires precise

mathematical tools rooted in the theory of PDEs and functional analysis. This topic has been the focus of research by various scholars, and

references [1, 3] offer further studies on the matter.

In the following, we outline a general approach to proving the existence and uniqueness of the solution:

3.1 Weak Formulation

To begin, we convert the advection-diffusion equation into its weak form. This formulation is particularly useful in mathematical analysis

and numerical methods, such as the finite element method. For test functions v ∈ H1(Ω), the weak form is expressed as follows:∫
Ω

∂c
∂ t

vdx+
∫

Ω
(u ·∇c)vdx−

∫
Ω

D∇C ·∇vdx =
∫

Ω
Svdx,

where:

• H1(Ω) is the Sobolev space of functions with square-integrable derivatives.

• The first term represents the time evolution of the concentration.

• The second term accounts for advection (transport by fluid flow).

• The third term represents diffusion, using integration by parts to ensure a well-posed weak formulation.

This weak form provides a foundation for applying the theory of Hilbert spaces, which is essential in proving the existence and uniqueness
of solutions.

3.2 Proof Techniques

3.2.1 Existence

By formulating the problem in the Hilbert space H1(Ω), we can use functional analysis techniques, such as:

• Lax-Milgram theorem: for linear equations, this theorem guarantees the existence of a solution in a Hilbert space, provided that the

operator is bilinear.

• Galerkin Method: by approximating the solution in a finite-dimensional space, a sequence of solvable problems is created. Then,

using density theorems such as Banach-Alaoglu and Rellich-Kondrachov compactness, the convergence of the sequence to a weak

solution is proven.

• Energy estimates: by defining a suitable energy function and examining its bounds, the existence of a solution for the equation can

be confirmed.

Using these tools, we analyze the properties of the weak solution and derive sufficient conditions for its existence and uniqueness.
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3.2.2 Uniqueness

Uniqueness is typically proven through the maximum principle or monotonicity properties.

• Maximum Principle: For advection and diffusion equations, it can be shown that the value of the solution at any point cannot

exceed the boundary or initial values.

• Energy Gradient Analysis: By demonstrating that the difference between two hypothetical solutions is zero, uniqueness is proven.

3.2.3 Boundary and Initial Conditions

For proving existence and uniqueness, boundary and initial conditions are important:

• Dirichlet Conditions: For fixing the value on the boundary.

• Neumann Conditions: For fixing the flux on the boundary.

• Robin Conditions: A combination of Dirichlet and Neumann conditions. For each type of condition, the proof must show that the

solution fits within the framework of the physical problem.

3.2.4 General Existence and Uniqueness Theorem

If the following conditions are satisfied:

• The diffusion coefficient D > 0 in Ω

• The velocity vector u is continuous and has bounded divergence.

• The source function S and boundary conditions are continuous and bounded.

Then the convection-diffusion equation has a weak solution C ∈ H1(Ω)that is unique.

3.2.5 Advanced Proof Tools

For more complex cases (such as nonlinear boundary conditions), the following methods may be used:

• Fixed Point Theory: This is applied to prove the existence of solutions in nonlinear problems. Fixed-point theorems (such as

Banachs Fixed Point Theorem or Schauders Fixed Point Theorem) are often used in the context of existence proofs.

• Semigroup Theory: This method is used to analyze time-dependent problems, especially in parabolic partial differential equations

like the convection-diffusion equation. It provides a framework for proving the existence and uniqueness of solutions in

infinite-dimensional spaces.

• Monotonicity Methods: Monotonicity Methods: These methods are used to prove uniqueness in nonlinear problems. If the

operator associated with the problem is monotonic, one can use these methods to demonstrate that a solution exists and is unique,

often leveraging the monotonicity to establish convergence.

These advanced methods allow for handling more complex scenarios and are particularly useful when traditional techniques do not suffice.

4 Numerical Methods for Solving Convection-Diffusion Equations
Due to the complexities involved in solving the equation accurately, the development of efficient and stable numerical methods for solving

it is of great importance. The numerical solution methods for the problem have been the subject of research, leading to various numerical

methods. For example, in [7, 8], one-dimensional convection-diffusion differential equations with partial derivatives are introduced. In the

next step, among the numerical methods for solving the convection-diffusion equation, the Chebyshev spectral method is selected, and its

numerical solution, stability, and accuracy are examined [8]. Then, in this study, an example of approximating the solution to the heat
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diffusion equation in a rectangular channel under the influence of air flow using the Chebyshev spectral method is presented. The numerical

results show that the proposed method is capable of solving the convection-diffusion equation with high accuracy and suitable numerical

stability. The results indicate that the combination of the Chebyshev spectral method and the RK4 time discretization achieves the desired

accuracy and numerical stability. Additionally, this study demonstrates the effectiveness of this method in solving similar problems, such as

modeling atmospheric flows or mass transfer in industrial systems.

5 Implementation of the Chebyshev Spectral Method for Approximating
the Solution of the Convection-Diffusion Equation

The Chebyshev spectral method is a powerful numerical technique for solving partial differential equations (PDEs) that offers high accuracy

and rapid convergence rates. This method is based on Chebyshev nodes and Chebyshev polynomials, and due to the use of the Chebyshev

derivative matrix, it has the capability to accurately approximate spatial derivatives. The steps for using this method to approximate the

solution of the convection-diffusion equation are generally outlined as follows:

5.1 Spatial Discretization using the Chebyshev Derivative Matrix

We consider the one-dimensional convection-diffusion equation subject to the following initial and boundary conditions:

∂u
∂ t

+ c
∂u
∂x

= r
∂ 2u
∂x2 , 0 < x < L, t > 0,

u(x,0) = f (x), 0 ≤ x ≤ L,

u(0, t) = g0(t), t ≥ 0,

u(L, t) = g1(t), t ≥ 0,

(1)

where u(x, t) is the dependent variable (such as temperature or concentration), c is the convective velocity, r is the diffusion coefficient, and

L is the length of the domain. We focus on a semi-discrete method obtained by discretizing equation (1) with respect to the spatial variable

using the Chebyshev spectral method. Below, the first-order (n+1)× (n+1) Chebyshev derivative matrix associated with the collocation

points (in space) is denoted by D.

0 = x0 < x1 < x2 < · · ·< xn, x j = [1− cos(
jπ
n
)] j = 0,1, . . . ,n. (2)

The main feature of these nodes is their non-uniform distribution, which leads to a higher density of points near the boundaries. This

distribution of nodes (collocation points) enhances the approximation accuracy, especially at the boundaries.

Now, the Chebyshev derivative matrix D is used for approximating the first and second-order derivatives.

(DU) j ≈
∂u
∂x

∣∣∣∣
x j

(D2u) j =
∂ 2u
∂x2

∣∣∣∣
x j

(3)

It is worth mentioning that the Chebyshev derivative matrix D is the main tool for numerically approximating first and second-order

derivatives in the Chebyshev spectral method. This matrix is obtained using Chebyshev nodes and the orthogonality properties of Chebyshev

polynomials. The advantages of the Chebyshev derivative matrix D include exponential convergence, the lack of requirement for uniform

grids, and its application in solving PDEs.

5.2 The Semi-Discrete Model

If we disregard the approximation error and represent vi(t) as an approximation to u(xi, t) by substituting the Chebyshev derivative matrix

D into the convection-diffusion equation (1), the semi-discrete system is obtained as follows:

dv
dt

= Av+b(t),

V (0) = [ f (x1), · · · , f (xn)].

(4)

In this equation,
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• The system matrix resulting from spatial discretization A = γD2−CD.

• B(t)Time-dependent boundary condition vector.

• V(t) Vector of function values at internal grid points.

5.3 Time Integration (Time Discretization)

The fourth-order Runge-Kutta (RK4) method is used for time integration:

vn+1 = vn +
∆t
6
(k1 +2k2 +2k3 + k4), (5)

where k1,k2,k3,k4, are obtained from the intermediate stages of the (RK4) method.

6 Stability of the Method
Numerical stability is an important aspect when solving partial differential equations (PDEs), and it must be carefully considered during the

design and implementation of numerical methods. In the Chebyshev spectral method, stability depends on the time step, the eigenvalues

of the system matrix A, and the stability region of the time integration method. By discretizing the convection-diffusion equation spatially

using the Chebyshev derivative matrix, the system matrix A = γD2 −CD is obtained, which approximates the first and second derivatives.

The eigenvalues λi of this matrix determine the spatial behavior of the system. For numerical stability, the scaled eigenvalues z = λ∆t must

lie within the stability region of the time integration method.

In this study, the fourth-order Runge-Kutta (RK4) method is used for time discretization. The stability region of this method is defined

as a disk-like region in the complex plane, and the scaled eigenvalues zi = λ∆t should lie within this region. The stability condition for the

numerical method depends on the proper choice of the time step, ensuring that λi|∆t| does not exceed the radius of the stability region.

In the stability analysis of this paper, the eigenvalues of matrix A were computed, and the position of the scaled eigenvalues relative to

the RK4 stability region was examined. The results show that a suitable choice of time step ensures that all scaled eigenvalues remain inside

the stability region, maintaining system stability. However, excessively large time steps may cause the scaled eigenvalues to move outside

the stability region, leading to numerical instability, particularly when convection or diffusion components dominate.

Finally, it can be concluded that the Chebyshev spectral method, combined with RK4 time integration, offers high numerical accuracy

and stability when an appropriate time step is chosen. The analysis of eigenvalues and the stability region is an essential part of designing

this numerical method, ensuring stable behavior and reliable results. For further reading on this subject, refer to [8].

7 Numerical Example
The heat transfer problem in a rectangular channel with a length of L = 1 meter is considered. The governing equation for this problem is

the one-dimensional convection-diffusion equation, given as follows:

∂T
∂ t

+u
∂T
∂x

= r
∂ 2T
∂x2 , 0 < x < 1, t > 0,

T (x,0) = sin(πx), 0 ≤ x ≤ 1,

T (0, t) = g0(t), t ≥ 0,

T (1, t) = g1(t), t ≥ 0,

(6)

where T (x, t) is the temperature as a function of space and time and u = 2 is the flow velocity and α = 0.01 is the thermal diffusivity

coefficient. The objective of this problem is to compute the temperature distribution T (x, t) over the interval [0,L] and analyze its behavior

over time t using the Chebyshev pseudo-spectral method. In this study, the one-dimensional convection-diffusion equation is used as a heat

transfer model in a channel and is solved using the Chebyshev pseudo-spectral method combined with fourth-order Runge-Kutta (RK4)

time integration. The approximation analysis of the solution is presented in three aspects: accuracy, stability, and physical behavior of the

results.
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In the first part, the accuracy of the Chebyshev pseudo-spectral method is very high due to the use of Chebyshev nodes and the

Chebyshev differentiation matrix. A comparison of the numerical results with the analytical solution Texact(x, t) = e−απ2t sin(πx) shows an

extremely small absolute error: |Texact(x, t)−Tnumeric(x, t)| = error at t = 0 and absolute error is less than 10−4. This high accuracy is due

to the exponential convergence of the Chebyshev pseudo-spectral method and the effectiveness of the fourth-order Runge-Kutta method in

time integration.

In the second part, the numerical stability of the method is examined. The analysis of the eigenvalues of the system matrix A and the

scaled values z = λ∆t shows that the time step ∆t = 0.01 lies within the stability region of the RK4 method. All values of z are located

inside the stability region of RK4 (a disk-like region in the complex plane). This analysis ensures that the numerical method is stable, with

no abnormal oscillations or divergence observed in the results.

In the third part, the physical behavior of the problem is analyzed. The temperature distribution T (x, t) is computed at different time

instances t = 0,0.025,0.05,0.1. The results show that at t=0, the temperature is distributed according to the initial condition of the problem,

T (x,0) = sin(πx). As time progresses, the temperature decreases and approaches the boundary conditions of the problem. The temperature

reduction over time is due to the combined effect of convection and diffusion, which aligns with physical expectations. The 3D plot of T(x,t)

clearly illustrates the temperature decrease over time and its convergence to the boundary conditions. The number of Chebyshev nodes

n=20 is sufficient for this problem, yielding a very small error. The choice of time step ∆t = 0.01 ensures a balance between stability and

computational efficiency.

7.1 Analysis of the Graphs

Here, we analyze the four graphs generated in the corresponding code. These graphs include the temperature distribution over time, the

absolute error, the stability region for the Runge-Kutta method, and the three-dimensional temperature distribution.

Figure 1. Temperature Distribution Over Time.

In Figure 1 shows the changes in temperature over the specified time interval. The horizontal axis (x) represents the spatial position

in the domain, ranging from 0 to L (domain length), and the vertical axis (y) represents the temperature at different spatial points in the

domain at different times.The different lines in the graph represent the temperature changes at various times (t = 0, t = 0.025, t = 0.05,

t = 0.1). From the graph, it can be concluded that the temperature gradually changes over time, with these changes varying depending on the

spatial location. These changes are caused by the effects of homogenization, diffusion, or convection in space and time, which are naturally

modeled by the partial differential equation (PDE).

In Figure 2 shows the absolute error between the computational results (numerical solution) and the exact results (analytical solution).

The horizontal axis (x) still represents the spatial position, and the vertical axis (y) represents the absolute error. This graph is specifically
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Figure 2. Absolute Error Over Time.

used to assess the accuracy of the numerical method employed.The graph shows that the error changes over time, and initially, the error may

be larger, but it decreases as time progresses. This indicates the good performance of the numerical method, which gradually approaches a

more accurate solution.

Figure 3. Stability Region for the Runge-Kutta Method.

In Figure 3 shows the stability region of the Runge-Kutta (RK4) method. The horizontal axis (Re(z)) represents the real part of the



Approximation solution by using Chebyshev pseudo-spectral method 57 of 59

complex number, and the vertical axis (Im(z)) represents the imaginary part of the complex number. The stability region of the Runge-Kutta

method is represented by the blue curve, which expresses the circular region of numerical stability in solving differential equations. In this

graph, the eigenvalues of the system matrix are shown as red dots inside the stability region. These values represent the behavior of the

system matrix at different time steps. If these eigenvalues fall outside the stability region, the numerical method may become unstable.

Figure 4. Three-Dimensional Temperature Distribution.

The Figure 4 is a three-dimensional plot that shows the temperature distribution in space and time. The horizontal axis (x) represents

the spatial position. The vertical axis (y) represents time in the interval (0, tmax). The third vertical axis (z) represents the temperature at

different spatial points in the domain and at different times.

The graph clearly shows the variations in temperature over time and throughout the spatial domain. It can be observed that the

temperature distribution gradually changes over time, and the temperature at different spatial points changes smoothly. This model clearly

demonstrates the effects of heat transfer and similar physical phenomena.

8 Conclusion
In this paper, numerical solutions to heat transfer problems were addressed using Chebyshev spectral methods and the Runge-Kutta time

integration technique. The main focus was on analyzing the temperature distribution over time and evaluating the performance of the

numerical method in comparison to an exact analytical solution. The results showed that the numerical method gradually approached the

exact solution, with error decreasing over time, confirming the accuracy and reliability of the chosen method. The use of Chebyshev spectral

methods provided high accuracy in solving the spatial components of the problem, while the Runge-Kutta method offered an efficient and

stable time solution. Moreover, stability analysis based on the eigenvalues of the system matrix and the stability region of the Runge-Kutta
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method indicated that the chosen time step and spatial discretization ensured numerical stability throughout the simulation. The absolute

error analysis revealed the convergence behavior of the numerical solution, showing that as the simulation progressed, the error decreased.

This indicates that the chosen method is appropriate for solving such problems with adequate accuracy. Finally, the 3D surface plot of the

temperature distribution in space and time comprehensively displayed the dynamics of the heat transfer process.

In conclusion, the combination of Chebyshev spectral methods and Runge-Kutta time integration provides an effective and accurate

approach to solving heat transfer problems, offering valuable insights into the system’s behavior while maintaining numerical stability and

accuracy. Future work may extend this method to more complex problems involving nonlinearity or multidimensional domains and enhance

its performance.
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