Formulas for the Drazin Inverse of Anti-Triangular Matrices

Document Type : Research Paper

Authors

1 Department of Mathematics, Semnan University, P.O.Box 35195-363, Semnan, Iran.

2 Department of Mathematics, Semnan Branch, Islamic Azad University, Semnan, Iran.

10.22128/gadm.2024.823.1109

Abstract

Let A be a Banach algebra. In this paper, for two Drazin invertible elements a; b 2 A, explicit formulas for the Drazin inverse (a + b) are given in the cases of a2ba = 0, (ba)2 = 0 and ab2 = 0. By using these formulas, the representations for the Drazin inverse of the anti-triangular operator matrices over Banach algebras are obtained, which also extend some existing results.

Keywords


 1. M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14, 1–137 (2005).
2. C. Bu, C. Feng, S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, J. Appl. Math. Comput., 218, 10226–10237 (2012).
3. S. L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 14, 195–198 (1983).
4. N. Castro-González, Additive perturbations results for the Drazin inverse, Linear Algebra Appl., 397, 279–297 (2005).
5. R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report, 592 (1965).
6. S. L. Campbell, C. D. Meyer, Generalized inverse of linear transformations, Dover, NewYork, 1991.
7. J. J. Climent, M. Neumann, A. Sidi, A semi-iterative method for real spectrum singular linear systems with an arbitrary index, J. Comput. Appl. Math., 87, 21–38 (1997).
8. M. Catral, D. D. Olesky, P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electron. J. Linear Algebra, 18, 98–107 (2009).
9. H. Chen, M. Sheibani, Additive proprties of g-Drazin inverse for linear operators, arXiv:1905.11095v1 [math.RA] 27 May 2019.
10. H. Chen, M. Sheibani, Generalized Hirano inverses in Banach algebras, Filomat, 33, 6239–6249 (2019).
11. H. Chen, M. Sheibani, The g-Hirano inverse in Banach algebras, Linear and Multilinear
Algebra, 69, 1352-1362 (2021).
12. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65, 506–514 (1958).
13. C. Y. Deng, Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 31, 1910–1922 (2009).
14. D. S. Djordjevic, Y. Wei, Additive results for the generalized Drazin inverse, J. Aust. Math. Soc., 73, 115–125 (2002).
15. A. Ghaffari, T. Haddadi, M. Sheibani, Extension of Hirano inverse in Banach algebra, Filomat, 36, 3197–3206 (2022).
16. J. J. Hunter, Generalized inverses of Markovian kernels in terms of properties of the Markov chain, Linear Algebra Appl., 447, 38–55 (2014).
17. R. E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl., 322, 207–217 (2001).
18. J. J. Koliha, A generalized Drazin inverse, Glasgow. Math. J., 38, 367–381 (1996).
19. J. Miao, Results of the Drazin inverse of block matrices, J. Shanghai Norm. Univ., 18, 25–31 (1989).
20. C. D. Meyer, N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33, 1–7 (1977).
21. C. D. Meyer, J. M. Shoaf, Updating finite Markov chains by using techniques of group inversion, Statist. Comput. Simulation, 11, 163–181 (1980).
22. P. Patrício, R. E. Hartwig, Some additive results on Drazin inverses, Appl. Math. Comput., 215, 530–538 (2009).
23. H. Yang, X. F. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235, 1412–1417 (2011).
24. H. Zou, D. Mosic, K. Zuo, Y. Chen, On the n-strong Drazin invertibility in rings, Turk. J. Math., 43, 2659–2679 (2019).