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Abstract

Let A be a Banach algebra. In this paper, for two Drazin invertible elements a,b ∈ A , explicit formulas for the Drazin inverse

(a+ b) are given in the cases of a2ba = 0, (ba)2 = 0 and ab2 = 0. By using these formulas, the representations for the Drazin

inverse of the anti-triangular operator matrices over Banach algebras are obtained, which also extend some existing results.
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1 Introduction
Let A be a Banach algebra with an identity. As is well known, in 1958, Drazin [12] defined, an element a ∈ A has Drazin inverse if there

is the element x ∈ A which satisfies

x ∈ comm(a), x = xax, and a−a2x ∈ N(A ),

or

x ∈ comm(a), x = xax, and ak = ak+1x.

The symbol N(A ) is the set of all nilpotent elements in A and the commutant of a ∈ A is defined by comm(a) = {x ∈ A ; xa = ax}. The

element x above is uniqe if it exists and is denoted by ad and called the Drazin inverse of a. The smallest such nonnegetive integer k is called

the Drazin index of a, denoted ind(a). When ind(a) = 1, ad is called the group inverse of a, denoted by a# [13]. Clearly, if ind(a) = 0, then

a is invertible and ad = a−1.

The Drazin inverse has many applications in singular differential equations and singular difference equations [3, 6], Markov chains

[16, 21] and iterative methods [7]. In 1958, Drazin [12] gave the explicit formula of (P+Q)d in the case of PQ = QP = 0 for P,Q ∈Cn×n.

In 2001, Hartwig et al. [17] gave a result of (P+Q)d when PQ = 0. In recent years, many papers focus on the problem under some weaker

conditions. In 2011-2021, Yang and Liu [23], Bu et al. [2], Chen and Sheibani [9, 11] and some other researchers gave the representation

of (P+Q)d under the different conditions. This result was extended to bounded linear operators on an arbitrary complex Banach space by

Djordjevic and Wei [14].
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In section 2, the invertibility of the sum of two Drazin invertible elements in a Banach algebra under some conditions will be presented.

We prove that for any a,b ∈ A D, if a2ba = 0, (ba)2 = 0 and ab2 = 0, then a+b ∈ A D and we give the explicit formula of (a+b)d .

On the other hand, a problem of great interest in this algebras is concerned with the Drazin inverse of matrices partitioned as

M =

(
A B

C D

)
, (1)

where A ∈ L (X)D, B ∈ L (X ,Y ), C ∈ L (Y,X) and D ∈ L (Y )D (A and D are square complex matrices but need not to be of the same size).

Here, M is a bounded operator on X ⊕Y . It was posed as an open problem by Campbell and Meyer [6] in 1979, and it has received great

attention. The most relevant case is concerned with block triangular matrices (either B = 0 or C = 0), solved by Meyer and Rose [20].

Otherwise, the representation of the Drazin inverse of an anti-triangular matrix M, where A = 0 or D = 0, was posed as an open

problem by Campbell [3] in 1983, in relation with the solution of singular second-order differential equations. Furthermore, these structured

matrices appear in applications like graph theory, saddle-point problems, and optimization problems [1, 8, 13]. In recent years, the problem

has become an important issue and some results have been given under some conditions, but it still remains open.

In section 3, we focus on deriving formulas for the Drazin inverse of an anti-triangular matrises

N =

(
A B

C 0

)
, and N =

(
0 B

C D

)
,

under some conditions. Then numerical examples are given to illustrate our results.

In section 4, we present some Drazin inverses for a 2× 2 operator matrix M under a number of different conditions, which generalize

[10], [24]. If a ∈ A has Drazin inverse ad . The element aπ = 1−aad is called the spectral idempotent of a. In this section, we consider the

Drazin inverse of a 2×2 operator matrix M under the perturbations on spectral idempotents. These also extends [15] to wider cases.

2 Main Results
In this section, we first present some lemmas without proof, then we give the formula of the Drazin inverse of a+ b under the conditions

that a2ba = 0, (ba)2 = 0 and ab2 = 0 which will be the main tool in our following development.

Lemma 1. [5] Let a,b ∈ A and ab ∈ A D. Then (ba)d = b
(
(ab)d)2a.

Lemma 2. [17] Let a,b ∈ A D be such that ind(a) = m and ind(b) = n. If ab = 0, then

(a+b)d =
n−1

∑
i=0

bπ bi(ad)i+1 +
m−1

∑
i=0

(bd)i+1aiaπ .

Theorem 1. Let a,b ∈ A D. If a2ba = 0, (ba)2 = 0 and ab2 = 0, then a+b ∈ A D and

(a+b)d = bd +(bd)2a+
[
ab(ad)4 − (bd)2aad −bdad](a+b)

+
[ k−1

∑
i=0

bπ b2i(I +bad)(ad)2(i+1)

+
k−2

∑
i=0

(bd)2i+3(a+bda2)a2iaπ](a+b),

where k = max{ind(a2)+1, ind(b2)}.

Proof. From the definition of the Drazin inverse, we have that

(a+b)d = (a+b)[(a+b)d ]2 = (a+b)[a(a+b)+b(a+b)].

Denote by F = a(a+b) and G = b(a+b). Since FG = 0, matrices F and G satisfy the condition of Lemma 2 and therefore

(a+b)d = (a+b)
[ ind(G)

∑
i=0

Gπ Gi(Fd)i+1 +
ind(F)

∑
i=0

(Gd)i+1F iFπ].
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Applying Lemma 1, we have

Fd = [a(a+b)]d = a[((a+b)a)d ]2(a+b),

Gd = [b(a+b)]d = b[((a+b)b)d ]2(a+b).

If we denote by F1 = (a+b)a and G1 = (a+b)b, we get

Fd = a(Fd
1 )

2(a+b),

Gd = b(Gd
1)

2(a+b).

In addition,

(Fd)2 = a(Fd
1 )

2(a+b)a(Fd
1 )

2(a+b) = a(Fd
1 )

3(a+b),

(Gd)2 = b(Gd
1)

2(a+b)b(Gd
1)

2(a+b) = b(Gd
1)

3(a+b).

and

(Fd)i = a(Fd
1 )

i+1(a+b),

(Gd)i = b(Gd
1)

i+1(a+b),

for every i ∈ N. After some computations we get

(a+b)d =
[ ind(G1)

∑
i=0

Gπ
1 Gi

1(F
d
1 )

i+1 +
ind(F1)

∑
i=0

(Gd
1)

i+1F i
1(F

d
1 )

π](a+b). (2)

Now, we calculate Fd
1 . Note that F1 can be rewritten as the sum F1 = F2 +F3, where F2 = a2 and F3 = ba. We see that F2

3 = 0 and F2F3 = 0.

By Lemma 2,

(Fd
1 )

i = (ad)2i +b(ad)2i+1, (3)

for every i ∈ N. Similarly, G1 can be rewritten as the sum G1 = G2 +G3, where G2 = ab and G3 = b2. We see that G3
2 = 0 and G2G3 = 0.

By Lemma 2,

(Gd
1)

i = (bd)2i +(bd)2i+2ab, (4)

for every i ∈ N. After computation we get

(F1)
i = ((a+b)a)i = a2i +ba2i−1,

and

(G1)
i =

(ab+b2)i, i = 1,2,

b2i−2ab+b2i, i ≥ 3,

for every i ∈ N. By substituting equation (3) and equation (4) into equation (2), we complete the proof.

The next Theorem is a symmetrical formulation of Theorem 1.

Theorem 2. Let a,b ∈ A D. If aba2 = 0, (ab)2 = 0 and b2a = 0, then a+b ∈ A D and

(a+b)d = bd +a(bd)2 +(a+b)
[
(ad)4ba−aad(bd)2 −adbd]

+(a+b)
[ k−2

∑
i=0

aπ a2i(a+a2bd)(bd)2i+3

+
k−1

∑
i=0

(ad)2(i+1)(I +adb)b2ibπ],
where k = max{ind(a2)+1, ind(b2)}.
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Corollary 1. Let a,b ∈ A D. If aba = 0 and ab2 = 0, then

(a+b)d =
[
−adbd +

k−1

∑
i=0

bπ bi(ad)i+2 +
k−1

∑
i=0

(bd)i+2aiaπ](a+b),

where k = max{ind(a), ind(b)}.

Corollary 2. Let a,b ∈ A D. If ab = 0, then

(a+b)d =
k−1

∑
i=0

bπ bi(ad)i+1 +
k−1

∑
i=0

(bd)i+1aiaπ ,

where k = max{ind(a), ind(b)}.

Corollary 3. Let a,b ∈ A D. If ab = 0 and ba = 0, then

(a+b)d = ad +bd .

3 Operator Matrices
To illustrate the preceding results, we are concerned with the Drazin inverse for an operator matrix. Throughout this section, consider the

anti-triangular operator matrices

N =

(
A B

C 0

)
, and N =

(
0 B

C D

)
.

In following Theorems we focus our attention to give the expression of block matrices of Nd and N d under some conditions, then using

different splitting approach and Theorem 1, we will apply the computational formula to give the computational formulas for Nd and N d

and we give some examples.

Lemma 3. [12] Let A ∈ L (X)D and D ∈ L (Y )D. Then

K =

(
A 0

0 0

)
, L =

(
0 0

0 D

)
, and G =

(
A 0

0 D

)
,

have Drazin inverse and

Kd =

(
Ad 0

0 0

)
, Ld =

(
0 0

0 Dd

)
, and Gd =

(
Ad 0

0 Dd

)
.

Lemma 4. [13] Let B ∈ L (X ,Y ) and C ∈ L (Y,X). If BC ∈ L (X)D or CB ∈ L (Y )D, then

H =

(
0 B

C 0

)
,

has Drazin inverse and

Hd =

(
0 (BC)dB

C(BC)d 0

)
=

(
0 B(CB)d

(CB)dC 0

)
.

Theorem 3. Let A,BC ∈ L (X)D. If ABC = 0 and BCB = 0, then N has Drazin inverse and

Nd =

(
Ad +BC(Ad)3 (Ad)2B+BC(Ad)4B

C(Ad)2 +CBC(Ad)4 C(Ad)3B+CBC(Ad)5B

)
.

Proof. Consider the splitting of N

N =

(
A B

C 0

)
=

(
A 0

0 0

)
+

(
0 B

C 0

)
= p+q.

According to the assumptions, we have p2qp = 0, (qp)2 = 0 and pq2 = 0. From BCB = 0, we can see that q4 = 0. Applying Theorem 1,

we have

Nd =
[
pq(pd)4 +(pd)2 +q(pd)3 +q2(pd)4 +q3(pd)5](p+q).

So, the statement of the theorem is valid.
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Corollary 4. Let A,BC ∈ L (X)D. If ABC = 0 and CBC = 0, then N has Drazin inverse and

Nd =

(
Ad +BC(Ad)3 (Ad)2B+BC(Ad)4B

C(Ad)2 C(Ad)3B

)
.

Proof. Using similar method as in Theorem 3, we get that the statement of the theorem is true.

Corollary 5. Let A ∈ L (X)D.

(1) If AB = 0 and BC = 0, then Nd =

(
Ad 0

C(Ad)2 0

)
.

(2) If AB = 0 and CB = 0, then Nd =

(
Ad +BC(Ad)3 0

C(Ad)2 0

)
.

Example 1. Consider matrix N =

(
A B

C 0

)
, where

A =

 1 1 −1

0 0 −1

0 0 0

 , B =

 −1

1

0

 , C =
(

−1 −1 1
)
.

After calculating, we get that ABC = 0 and BCB = 0. Hence, the conditions of Theorem 3 are satisfied. By computing we obtain

ind(A) = 2 , Ad =

 1 1 −2

0 0 0

0 0 0

 ,

then according to the formula in Theorem 3, we get

Nd =


2 2 −4 0

−1 −1 2 0

0 0 0 0

−1 −1 2 0

 .

Theorem 4. Let A,BC ∈ L (X)D. If BCA = 0 and BCB = 0, then N has Drazin inverse and

Nd =

(
Ad +(Ad)3BC (Ad)2B

C(Ad)2 +C(Ad)4BC C(Ad)3B

)
.

Proof. Using similar method as in Theorem 3 and conditions of Theorem 2, that is pqp2 = 0, (pq)2 = 0 and q2 p = 0, we have

Nd = (p+q)
[
(pd)4qp+(pd)2 +(pd)3q+(pd)4q2 +(pd)5q3].

So, the statement of the theorem is valid.

Corollary 6. Let A,BC ∈ L (X)D. If BCA = 0 and CBC = 0, then N has Drazin inverse and

Nd =

(
Ad +(Ad)3BC (Ad)2B+(Ad)4BCB

C(Ad)2 +C(Ad)4BC C(Ad)3B+C(Ad)5BCB

)
.

Proof. Using similar method as in Theorem 4, we get that the statement of the theorem is true.

Corollary 7. Let A ∈ L (X)D.
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(1) If CA = 0 and BC = 0, then Nd =

(
Ad (Ad)2B

0 0

)
.

(2) If CA = 0 and CB = 0, then Nd =

(
Ad +(Ad)3BC (Ad)2B

0 0

)
.

Corollary 8. Let A ∈ L (X)D. In Theorems 3 and 4, if BC = 0, then

Nd =

(
Ad (Ad)2B

C(Ad)2 C(Ad)3B

)
.

Example 2. Let

A =


0 0 1 0

0 1 0 0

0 0 1 −1

0 −1 1 −1

 , B =


1

1

0

−1

 , C =
(

0 1 −1 1
)
,

set the 2×2 block matrix N =

(
A B

C 0

)
. Then

ind(A) = 3 , Ad =


0 1 0 0

0 1 0 0

0 1 0 0

0 0 0 0

 .

It is easy to verify that BCA = 0 and BCB = 0. Therefore we can apply Theorem 4 and we get

Nd =


0 2 −1 1 1

0 2 −1 1 1

0 2 −1 1 1

0 0 0 0 0

0 0 0 0 0

 .

Theorem 5. Let D,CB ∈ L (Y )D. If DCB = 0 and BCB = 0, then N has Drazin inverse and

N d =

(
B(Dd)3C B(Dd)2

(Dd)2C+CB(Dd)4C Dd +CB(Dd)3

)
.

Proof. Consider the splitting of N

N =

(
0 B

C D

)
=

(
0 0

0 D

)
+

(
0 B

C 0

)
= p+q.

The remaining proof follows directly from Theorem 3. Here, we omit the details.

Corollary 9. Let D,CB ∈ L (Y )D. If DCB = 0 and CBC = 0, then N has Drazin inverse and

N d =

(
B(Dd)3C+BCB(Dd)5C B(Dd)2 +BCB(Dd)4

(Dd)2C+CB(Dd)4C Dd +CB(Dd)3

)
.

Corollary 10. Let D ∈ L (Y )D.

(1) If DC = 0 and BC = 0, then N d =

(
0 B(Dd)2

0 Dd +CB(Dd)3

)
.

(2) If DC = 0 and CB = 0, then N d =

(
0 B(Dd)2

0 Dd

)
.
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Example 3. Consider the 2×2 block matrix N =

(
0 B

C D

)
, where

D =

 0 0 1

−1 −1 0

0 0 1

 , B =

(
1 1 −1

0 0 0

)
, C =

 1 −1

−1 1

0 0

 .

By computing we obtain

ind(D) = 1, Dd =

 0 0 1

1 1 −1

0 0 1

 .

It can be checked that DCB = 0 and BCB = 0. Hence, the conditions of Theorem 5 are satisfied. Then according to the formula in Theorem

5, we get

N d =


0 0 1 1 −1

0 0 0 0 0

0 0 −1 −1 1

0 0 0 0 0

0 0 0 0 1

 .

Theorem 6. Let D,CB ∈ L (Y )D. If CBD = 0 and BCB = 0, then N has Drazin inverse and

N d =

(
B(Dd)3C+B(Dd)5CBC B(Dd)2 +B(Dd)4CB

(Dd)2C+(Dd)4CBC Dd +(Dd)3CB

)
.

Proof. Using similar method as in Theorem 5 and conditions of Theorem 2, the statement of the theorem is valid. The remaining proof

follows directly from Theorem 4.

Corollary 11. Let D,CB ∈ L (Y )D. If CBD = 0 and CBC = 0, then N has Drazin inverse and

N d =

(
B(Dd)3C B(Dd)2 +B(Dd)4CB

(Dd)2C Dd +(Dd)3CB

)
.

Corollary 12. Let D ∈ L (Y )D.

(1) If BD = 0 and BC = 0, then N d =

(
0 0

(Dd)2C Dd +(Dd)3CB

)
.

(2) If BD = 0 and CB = 0, then N d =

(
0 0

(Dd)2C Dd

)
.

Corollary 13. Let D ∈ L (Y )D. In Theorems 5 and 6, if CB = 0, then

N d =

(
B(Dd)3C B(Dd)2

(Dd)2C Dd

)
.

Example 4. For the 2×2 block matrix N =

(
0 B

C D

)
, where

D =

 1 −1 0

1 0 1

−1 1 0

 , B =
(

−1 0 −1
)
, C =

 1

−1

−1

 ,
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we have that

ind(D) = 2, Dd =

 0 −1 −1

0 0 0

0 1 1

 .

After calculating, we get that CBD = 0 and BCB = 0, in Theorem 6. We have

N d =


0 0 0 0

2 −2 −1 −3

0 0 0 0

−2 2 1 3

 .

4 Applications to the Drazin Inverse of Block Matrix
In this section, we use the formulas in ”Main Results” section and lemma 5 to give some representations for the Drazin inverse of some

block matrices that the following Theorems 7 and 8 generalizes the result.

Lemma 5. [19] Let A ∈ L (X)D, D ∈ L (Y )D and M be given by (1.1). If generalized Schur complement S = D−CAdB is zero, Aπ B = 0,

CAπ = 0 and AW = A2Ad +AAdBCAd has Drazin inverse, then M ∈ L (X ⊕Y )D and

Md =

(
I

CAd

)(
(AW )d)2A

(
I AdB

)
.

Theorem 7. Let A ∈ L (X)D, D ∈ L (Y )D and M be given by (1.1). If CAπ A = 0, CAπ BCA = 0, BCAπ BC = 0 and D = CAdB. If

AW = A2Ad +AAdBCAd has Drazin inverse, then M ∈ L (X ⊕Y )D and

Md = Qd +(Qd)2

(
0 0

CAπ 0

)
+(Qd)3

(
0 0

CAπ A CAπ B

)
,

where

(Qd)n =
k

∑
i=0

(
Aπ A Aπ B

0 0

)i

(Qd
1)

i+n,

(Qd
1)

i =

(
I

CAd

)(
(AW )d)i+1A

(
I AdB

)
,

for every i ∈ N and k = ind(A).

Proof. We easily see that

M =

(
A B

C CAdB

)
= P+Q,

where

P =

(
0 0

CAπ 0

)
, and Q =

(
A B

CAdA CAdB

)
.

By assumption, we verify that P2 = 0, (QP)2 = 0 and PQ2 = 0. Clearly, P has Drazin inverse, we get Pd = 0. Moreover, according to

Theorem 1, we have

Md = Qd +(Qd)2P+(Qd)3PQ. (5)

Let Q1 =

(
A2Ad AAdB

CAAd CAdB

)
and Q2 =

(
AAπ 0

CAπ 0

)
, then we have Q = Q1 +Q2, Q2 is nilpotent and Q1Q2 = 0, so Qd

2 = 0. We easily

check that

Q1 =

(
AAd

CAd

)(
A AAdB

)
.
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By hypothesis, we see that (
A AAdB

)( AAd

CAd

)
= A2Ad +AAdBCAd = AW,

has Drazin inverse. Therefore Q1 has Drazin inverse. By virtue of Theorem 1, M ∈ L (X ⊕Y )D, as required. Now, according to Corollary

2, we get

Qd = (Q1 +Q2)
d =

k

∑
i=0

Qi
2(Q

d
1)

i+1, (6)

where k = ind(A) and for every n ∈ N,

(Qd)n =
k

∑
i=0

Qi
2(Q

d
1)

i+n. (7)

The generalized Schur complement of Q1 is equal to zero, and the matrix Q1 satisfies

(A2Ad)π AAdB = 0, and CAAd(A2Ad)π = 0,

so according to Lemma 5, we get

((Q1)
d)i =

(
I

CAd

)(
(AW )d)i+1A

(
I AdB

)
.

for every i ∈ N. By substituting Equ.(7) into Equ.(6), we obtain the expression of Qd , substituting Qd into equation (5), the expression of

Md is obtained.

Example 5. Let M =

(
A B

C D

)
, where

A =


0 1 1 0

0 1 0 0

0 0 0 0

1 0 0 0

 , B =


−1 −1 0

0 0 1

1 1 0

0 −1 0

 ,

C =

 0 1 −1 0

0 −1 1 0

0 1 0 0

 , D =

 0 0 1

0 0 −1

0 0 1

 .

We have that ind(A) = 3 and

Ad =


0 1 0 0

0 1 0 0

0 0 0 0

0 1 0 0

 , Dd =

 0 0 1

0 0 −1

0 0 1

 ,

Aπ =


1 −1 0 0

0 0 0 0

0 0 1 0

0 −1 0 1

 , (AW )d =


0

1
2

0 0

0
1
2

0 0

0 0 0 0

0
1
2

0 0

 .

We easily check that CAAπ = 0, CAπ BCA = 0, BCAπ BC = 0 and D =CAdB. Then by Theorem 7, we obtain that

Md =
1

16



0 2 0 0 0 0 2

0 4 0 0 0 0 4

0 0 0 0 0 0 0

0 3 0 0 0 0 3

0 4 0 0 0 0 4

0 −4 0 0 0 0 −4

0 4 0 0 0 0 4


.
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Theorem 8. Let A ∈ L (X)D, D ∈ L (Y )D and M be given by (1.1). If A2Aπ BC = 0, BCAπ BC = 0, CAAπ BC = 0 and D =CAdB. If

AW = A2Ad +AAdBCAd ,

has Drazin inverse, then M ∈ L (X ⊕Y )D and

Md =
[
(Pd)2 +

(
0 Aπ B

0 0

)
(Pd)3 +

(
0 AAπ B

0 CAπ B

)
(Pd)4]×( A B

C D

)
,

where

(Pd)n =
k

∑
i=0

(Pd
1 )

i+n

(
AAπ 0

CAπ 0

)i

,

(Pd
1 )

i =

(
I

CAd

)(
(AW )d)i+1A

(
I AdB

)
,

for every i ∈ N and k = ind(A).

Proof. We easily see that

M =

(
A B

C CAdB

)
= P+Q,

where

P =

(
A AAdB

C CAdB

)
, and Q =

(
0 Aπ B

0 0

)
.

By assumption, we verify that P2QP = 0, (QP)2 = 0 and Q2 = 0. Clearly, Q has Drazin inverse, we get Qd = 0. Moreover, according to

Theorem 1, we have

Md =
[
(Pd)2 +Q(Pd)3 +PQ(Pd)4](P+Q). (8)

Let

P1 =

(
A2Ad AAdB

CAAd CAdB

)
, and P2 =

(
AAπ 0

CAπ 0

)
,

then we have P = P1 +P2, P2 is nilpotent and P2P1 = 0, so Pd
2 = 0. Simillary to proof of Theorem 7, P1 has Drazin inverse and for every

n ∈ N,

(Pd)n =
k

∑
i=0

(Pd
1 )

i+nPi
2. (9)

and (
(P1)

d)i
=

(
I

CAd

)(
(AW )d)i+1A

(
I AdB

)
.

for every i ∈ N. After substituting this expressions and equation (9) into equation (8), we complete the proof.

Example 6. Let M =

(
A B

C D

)
, where

A =


1 −1 0 0

0 0 0 0

0 1 1 0

0 −1 0 0

 , B =


1 0

−1 0

1 0

0 1

 ,

C =

(
1 −1 0 0

0 0 0 0

)
, D =

(
2 0

0 0

)
.
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We have that ind(A) = 2 and

Ad =


1 −1 0 0

0 0 0 0

0 1 1 0

0 0 0 0

 , Dd =

 1
2

0

0 0

 ,

Aπ =


0 1 0 0

0 1 0 0

0 −1 0 0

0 0 0 1

 , (AW )d =


1
3

−1
3

0 0

0 0 0 0

0 1 1 0

0 0 0 0

 .

We easily check that A2Aπ BC = 0, BCAπ BC = 0, CAAπ BC = 0 and D =CAdB. Then by Theorem 8, we obtain that

Md =
1

243



18 −18 0 0 36 0

−9 9 0 0 −18 0

9 234 243 0 18 0

3 −3 0 0 6 0

27 −27 0 0 54 0

0 0 0 0 0 0


.
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