A Numrical Method for Solving a Parabolic Problem Emanating in Financial Mathematics

Document Type : Original Research Article

Author

School of Mathematics and Computer Science, Damghan University, P.O.Box 36715–364, Damghan, Iran

Abstract

This study aims to develop a robust numerical algorithm for solving parabolic partial differential equations (PDEs) arising in the domain of financial mathematics. The proposed approach leverages the finite difference method (FDM) to discretize the temporal and spatial domains of the problem. To approximate the unknown solution, we employ a polynomial interpolation technique, ensuring high accuracy and stability in the numerical solution. The effectiveness and efficiency of our method are demonstrated through comprehensive numerical experiments, showcasing its potential for practical applications in financial modeling.

Keywords


1. J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse Heat Conduction: IllPosed Problems, Wiley-Interscience, NewYork, (1985).
2. J. V. Beck, B. Blackwell, A. Haji-sheikh, Comparison of some inverse heat conduction methods using experimental data, Internat. J. Heat Mass Transfer, 3, 3649–3657 (1996).
3. J. V. Beck, D. C. Murio, Combined function specification-regularization procedure for solution of inverse heat condition problem, AIAA J., 24, 180–185 (1986).
4. C. L. Chang, M. Chang, Inverse determination of thermal conductivity using semidiscretization method, Applied Mathematical modeling, 33, 1644-1655 (2009).
5. R. Pourgholi, N. Azizi, Y. S. Gasimov, F. Aliev, H. K. Khalafi, Removal of Numerical Instability in the Solution of an Inverse Heat Conduction Problem, Communications in Nonlinear Science and Numerical Simulation, 14(6), 2664–2669 (2009).
6. R. Pourgholi, M. Rostamian, A numerical technique for solving IHCPs using Tikhonov regularization method, Applied Mathematical Modelling, 34(8), 2102–2110 (2010).
7. S. Foadian, R. Pourgholi, S. H. Hashem Tabasi, Cubic B-spline method for the solution of an inverse parabolic system, Applicable Analysis, 97(3), 438–465 (2018).
8. S. Foadian, R. Pourgholi, S. H. Hashem Tabasi, J. Damirchi, The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets, International Journal of Computer Mathematics, 96(1), 105–125 (2019).
9. S. Foadian, R. Pourgholi, M. Gholami Baladezaei, Numerical Solution of the Inverse Gardner Equation, TWMS Journal of Applied and Engineering Mathematics, 13(2), 649–660 (2021).
10. S. Foadian, R. Pourgholi, A. Esfahani, Numerical Solution of the Linear Inverse Wave Equation, International Journal of Nonlinear Analysis and Applications, 13(2), 1907–1926 (2022).
11. R. Pourgholi and A. Saeedi, Applications of cubic b-splines collocation method for solving nonlinear inverse parabolic partial differential equations, Numerical Methods for Partial Differential Equations, 33(1), 88–104 (2017). 
12. R. Pourgholi, S. H., Tabasi, H. Zeidabadi, Numerical techniques for solving system of nonlinear inverse problem. Engineering with Computers 34, 487–502 (2018).
13. A. Esfahani, R. Pourgholi, Dynamics of Solitary Waves of the Rosenau-RLW Equation. Differ. Equ. Dyn. Syst. 22, 93–111 (2014). 
Volume 8, Issue 1
July 2023
Pages 117-126
  • Receive Date: 14 May 2024
  • Revise Date: 10 July 2024
  • Accept Date: 13 July 2024
  • Publish Date: 01 November 2023