1. J. P. Bode, A. M. Hinze, Results and open problems on the Tower of Hanoi, Congr. Numer. 139, 113–122 (1999).
2. Y. Dinitz, S. Solomon, Optimal algorithms for Tower of Hanoi problems with relaxed placement rules, In Algorithms and computation, Vol. 4288 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006.
3. H. E. Dudeney, The Canterbury Puzzles and Other Curious Problems, 4th ed., Dover Publications, Inc., New York, 1959.
4. X. Chen, B. Tian, L. Wang, Santa Claus’ towers of Hanoi, Graphs Combin., 23, 153–167 (2007).
5. J. S. Frame, B. M. Stewart, Solution to advanced problem 3819, Amer. Math. Monthly, 48(3), 216–219 (1941).
6. A. M. Hinz, The Tower of Hanoi, Enseign. Math., 2(35), 289–321 (1989).
7. A. M. Hinz, Pascal’s triangle and the tower of Hanoi, Amer. Math. Monthly, 99, 538–544 (1992).
8. A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi-Myths and Maths, Birkhäuser/Springer Basel AG, Basel, 2013.
9. W. Imrich, S. Klavzˇar, D. F. Rall, Topics in Graph Theory, Graphs and Their Cartesian Product, A K Peters, Wellesley Massachusetts, 2008.
10. K. M. Koh, C. C. Chen, Principles and Techniques in Combinatorics, World scientific Publishing Co. thired reprint, 1999.
11. D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2002.