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Abstract

Many interesting structures are arising from the Tower of Hanoi puzzle. Some of them increase the number of pegs and some of the

others relax the Divine Rule. But all of them accept discs of different diameters. In this paper, we increased the number of available

pegs and changed the Divine Rule by considering similar discs, that is, all discs have the same size diameter. From this point of

view, the Tower of Hanoi puzzle becomes the distributing of n identical discs (objects) into k distinct labeled pegs (boxes). We

modify Lucas’s legend to justify these variations. Each distribution of n discs on k pegs is a regular state. In a Diophantine Graph,

every possible regular state is represented by a vertex. Two vertices are adjacent in a Diophantine Graph if their corresponding

states differ by one move. The Diophantine Graphs have shown to possess attractive structures. Since it can be embedded as a

subgraph of a Hamming Graph, the Diophantine Graph may find applications in fault-tolerant computing.

Keywords: Linear equations, Diophantine graphs, Connectivity, Distance, Tower of Hanoi

Mathematics Subject Classification (2020): 80A20, 65Z05, 65L06

1 Introduction
Towers of Hanoi problem was introduced in 1883 by the French number theorist Edouard Lucas (1842-1891). The traditional puzzle consists

of three vertical pegs and n discs, each of mutually different diameters. The puzzle starts with all discs on the first peg arranged in such a

way that no larger disc lies on a smaller one (divine rule). A state obeying this divine rule is called regular state [1,6]. The goal of the puzzle

is to transfer all discs to the third peg under the following stipulations:

1. Only one disc may be moved at a time;

2. Only the top disc on each peg can be moved;

3. The Divine Rule - A larger disc can never be placed on top of a smaller one.

As shown in the 2013 text by Heinz et al. [8], there are many variations on the Tower of Hanoi puzzle. One variation involves increasing the

number of available pegs as in the Reve’s puzzle [3]. Many variations relax the Divine Rule. These variations include the Bottleneck Tower

of Hanoi [2], the Santa Claus Tower, and the Sinners’ Tower [4,5]. In this paper, we consider two changes in the Tower of Hanoi puzzle, by

increasing the number of vertical pegs and changing the Divine Rule by considering all discs had the same size.
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With these changes, the Tower of Hanoi problem, changed to the Distribution Problem, i.e. distributing n identical objects into k distinct

labeled boxes (pegs). On the other hand, the Distribution Problem consists of k pegs numbered 1,2, . . . ,k, and n identical discs. A (legal)

n−configuration or regular state is a distribution of n discs among the pegs by stacking them on the pegs. A (legal) move changes one

n−configuration into another by moving one topmost disc on one peg to the top of another peg. In the original setting, all discs lie on the

peg numbered ’1’ (this is a perfect state of the Problem) Fig. 1, and the task is to transfer them to the last peg numbered ’k’.

Figure 1. Initial state, all n discs lie on the peg numbered ’1’.

In this paper, we will show each regular state by a nondecreasing n−bit string a1a2 . . .an, where 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k. Here, we

present a new interconnection structure, called the Diophantine Graph, which is inspired by the famous Diophantine Linear equations. One

of the famous problems in elementary combinatorics is counting the number of ways of distributing n identical objects into k distinct labeled

boxes. There are many interesting solutions in the literature.

One of these genius ways is representing each distribution by a binary string of length n+ k−1. Suppose all boxes (pegs) are arranged

side by side in a line by increasing labels. That is, they are arranged from left to right, numbered 1 through k. If we use a ’0’ to denote

an object and a ’1’ to denote a separator vertical stroke between two adjacent boxes, then every way of distributing n identical objects in k

distinct boxes, can be represented by a unique binary string of length n+ k−1 with n 0’s and (k−1) 1’s. This correspondence is indeed a

bijection between the family of all distribution of n identical objects into k distinct boxes and the family of all such binary strings.

For example, in Fig. 2, the distribution of n = 11 objects into k = 4 boxes is represented by the binary string 00001001100000.

Figure 2. A distribution and it’s corresponds binary string 00001001100000

But, we can represent this binary string by a 4−ary string ’11112244444’ of length n = 11, in which we write the label of each box instead

of its objects, that is, we labeled by ’i’ for each object in the box of the label ’i’. It is easy to see that, there is a bijection between the

family of all binary strings of length n+ k− 1 with n 0’s and (k− 1)1’s and the family of all increasing n−bit string a1a2 . . .an, where

1 ≤ a1 ≤ a2 ≤ . . .≤ an ≤ k.

Definition 1. Let n,k ≥ 1 are given positive integers. Let α = a1a2 . . .an, be a string of length n over the set {1,2, . . . ,k}, then we say that

the α is an increasing n−string over the set {1,2, . . . ,k}, if 1 ≤ a1 ≤ a2 ≤ . . .≤ an ≤ k.

Now, turn our attention to consider the following important and typical problem in combinatorics namely, finding the number of integer

solutions to the linear equation:

x1 + x2 + · · ·+ xk = n, (1)

in k unknowns x1,x2, . . . ,xk, where n ≥ 1 and k ≥ 1 are nonnegative integers. An integer solution to the equation (1) is a k−tuple

(e1,e2, . . . ,ek) of integers satisfying (1) when xi substituted by ei, for each i = 1,2, . . . ,k. Now, every nonnegative integer solution
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(e1,e2, . . . ,ek) to (1) corresponds to a way of distributing n identical objects to k distinct boxes as shown below:

e1︷ ︸︸ ︷
o · · ·o︸ ︷︷ ︸
peg1

+

e2︷ ︸︸ ︷
o · · ·o︸ ︷︷ ︸
peg2

+ · · ·+
ek︷ ︸︸ ︷

o · · ·o︸ ︷︷ ︸
pegk

= n.

Clearly, different solutions to 1 correspond to different ways of distributing. On the other hand, every such way of distribution corresponds

to a nonnegative integer solution to (1). Since the correspondence is a one-to-one correspondence, thus, the number of increasing k−ary

n−string is equal to the number of nonnegative solutions of the equation (1), is

(
n+ k−1

k−1

)
.

From now on, we called each increasing k−ary n−string α = a1a2 . . .an as a Diophantine code of the kind (n,k) or simply

(n,k)−Diophantine code.

2 Diophantine Graph
A convenient and direct representation of the Distribution Problem is graph representation. In a Distribution Problem, every possible state

of the Problem is represented by a vertex. Two vertices are adjacent in the Diophantine Graph if their corresponding states differ by one

move. In this section, we define the Diophantine graph and investigate some basic parameter of it. But, before this we need the following

definitions. Recall that the Hamming distance between two binary strings α and β is the number H(α,β ) of bits, where α and β differ [9].

Now, we generalize this concept to Diophantine codes.

Definition 2. Let n,k ≥ 1 be positive integers. The Diophantine graph Dn
k of kind (n,k) is the graph (V n

k ,E
n
k ), where

V n
k = {a1a2 . . .an : 1 ≤ a1 ≤ a2 ≤ . . .≤ an ≤ k},

that is the set of all Diophantine codes of the kind (n,k) and (α,β ) ∈ En
k if and only if H(α,β ) = 1.

Example 1. Let k=1 and n=3, then, D3
1 is a graph with only one vertex A = 111 (Fig. 3(a)). For each n ≥ 1 one can show that, Dn

1 ≃ K1.

Example 2. Let k = 2 and n = 3, then,

V 3
2 = {111,112,122,222},

and (3,2)−Diophantine Graph D3
2 is isomorphic to P4 (Fig. 3(b)).

For each n ≥ 1, one can simply show that, Dn
2 ≃ Pn+1.

Figure 3. Diophantine Graphs

Now, we want to draw the Diophantine graph corresponding to the non-negative integer solutions of the equation x1 + x2 + x3 = 1. We

want to show each solution of the equation by 1-string over the set {1,2,3}.The solutions of this equation are x1 = 1,x2 = x3 = 0, which

corresponds to the 1-string a1 = 1; or the solution x2 = 1,x1 = x3 = 0 where it corresponds to the 1-string a1 = 2; and the last solution

x3 = 1,x1 = x2 = 0, which correspond to the 1-string a1 = 3 (Fig. 3(c)).

Therefore, we have three distinct sequences of length 1, each pair is different in one component and their corresponding vertices in the

Diophantine graph are adjacent. Hence, D1
3 ≃ K3. In general, we have the following lemma:

Lemma 1. For each positive integer k ≥ 1, we have D1
k ≃ Kk.

Proof. It is easy to prove by distributing of ’1’ object into k boxes. Then, there are n different (1,k)−Diophantine codes, in which, all pairs

have one different component.
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3 Some Preliminary Properties of D-Graphs
Our next task is to count |V n

k |. It is a simple problem in introductory combinatorics (cf. [10]) to see that, each distribution of n identical

objects in k labeled distinct boxes corresponds to a solution of the Diophantine equation x1 +x2 + · · ·+xk = n, and hence, corresponding to

an increasing n−string over the set {1,2, . . . ,k}. So, we have the following lemma.

Lemma 2. |V n
k |=

(
n+ k−1

k−1

)
.

Now, we find some structural properties of the Diophantine graphs. Since each vertex of the Diophantine graph corresponds to a solution

of the Diophantine linear equation x1 + x2 + · · ·+ xk = n.

Proposition 1. Let n ≥ 1 and k ≥ 1 be positive integers. Let α = a1a2 . . .an is an arbitrary vertex of the Diophantine graph Dn
k , then

degDn
k
(α) = (an −a1)+(k−1).

Proof. If k = 1, then for each positive integer n ≥ 1 there is only one way to distribute n identical objects into one box. That is, in 1’st

move, and 2nd move, . . ., and n’th move, in each time only one object lies in the only box. Thus, a1 = a2 = · · · = an = 1. Hence, the

only one (n,1)−Diophantine code is α =

n︷ ︸︸ ︷
11 . . .1. Thus, degDn

1
(α) = (1−1)+(1−1) = 0. Now, suppose that, k ≥ 2, and α = a1a2 . . .an,

β = b1b2 . . .bn are vertices of (n,k)−Diophantine graph Dn
k , we know α and β are adjacent if they are different in only one component.

Thus, (α,β ) ∈ En
k iff

• a1 ̸= b1 and for each i ̸= 1, ai = bi and 1 ≤ b1 ≤ a2, there is a2 −1 choice for b1

or

• a2 ̸= b2 and for each i ̸= 2, ai = bi and a1 ≤ b2 ≤ a3, there is a3 −a1 choice for b2

or
...

or

• an−1 ̸= bn−1 and for each i ̸= n−1, ai = bi and an−2 ≤ bn ≤ an, there is an −an−2 choice for bn−1

or

• an ̸= bn and for each i ̸= n, ai = bi and an−1 ≤ bn ≤ k, there is k−an−1 choice for bn.

Hence, by the Addition Principle, the desired number of adjacent vertices in the neighborhood of the vertex α is (an −a1)+ k−1.

Immediately, from the above theorem the minimum and maximum degrees in the (n,k)−Diophantine graphs Dn
k are k− 1 and 2k− 2,

respectively. By Theorem 1, each of the vertices where an = a1, has minimum degree δ = k− 1 and those vertices whose labels include

an = k and a1 = 1 have maximum degree ∆ = 2k−2. Each vertex in (n,k)−Diophantine graph Dn
k labeled by a constant Diophantine code

is called a corner vertex. Our main result is computed the size of the (n,k)−Diophantine graphs Dn
k , but first, we find the number of vertices,

those Diophantine codes which are started with a given integers a1 and terminated by an an.

Lemma 3. Let, 1 ≤ a1 ≤ an ≤ k are given. Then, the number of vertices whose (n,k)−Diophantine Codes are started by a1 and terminated

by an, is (
n−2+(an −a1 +1)−1

(an −a1 +1)−1

)
=

(
n−2+(an −a1)

an −a1

)
.

Proof. Our main task is to find Diophantine Codes of kind (n,k), whose first and the last components are a1 and an, respectively.

Since, 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ k, and for each 1 ≤ i ≤ k, we have a1 ≤ ai ≤ an, thus, the number of selections of ai is an − a1 + 1. On

the other hand, for given a1 and an, the number of distributing of n objects into an −a1 +1 boxes where, the first and the last boxes have at

least one object analogous to distribution of n−2 identical objects into, an −a1 +1 distinct labeled boxes and is(
n−2+(an −a1 +1)−1

(an −a1 +1)−1

)
=

(
n−2+(an −a1)

an −a1

)
.
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In Theorem 1, we show that the degree of each vertex α = a1a2 . . .an of (n,k)-Diophantine graphs, depends only on a1 and an, by this

fact and the hand shaking theorem [11], we can find the number of edges of the (n,k)−Diophantine graphs Dn
k .

Proposition 2. Let |En
k | be the number of edges of the Diophantine graph Dn

k = (V n
k ,E

n
k ), then

|En
k |= qn

k =



(k
2
)
, if n = 1,

(k−1)k(k+1)
3 , if n = 2,

1
2 ∑k−1

i=1 ∑k−i
j=1
(n+ j−2

j
)

j+ 1
2
(n+k−1

k−1
)
(k−1), if n ≥ 3.

Proof. If n = 1, then for each k ≥ 1, by lemma 1, D1
k ≃ Kk. Thus q1

k =
(k

2
)
. Now, let n = 2. Thus, we need all (2,k)−Diophantine Code ab,

where we sorted them by lexicographic order in the following array:

12 13 14 . . .1(k−1) 1k

23 24 . . .2(k−1) 2k
. . .

...
...

(k−2)(k−1) (k−2)k

(k−1)k

(2)

This is a (k−1)× (k−1) array, we divided it along the main diagonal into k−1 disjoint subsets as follows:

Li = {ab | 1 ≤ a ≤ b ≤ k, b−a = i},

where i = 1,2, . . . ,k−1. It is easy to check that each subset Li, i = 1,2, . . . ,k−1, has k− i elements. Thus,

2q2
k = ∑

1≤a≤b≤k
deg(ab)

= ∑
1≤a≤b≤k

[(b−a)+(k−1)] (Theorem 1)

= ∑
1≤a≤b≤k

(b−a)+ ∑
1≤a≤b≤k

(k−1)

=
k−1

∑
j=0

(k− j) j+
(

2+ k−1
k−1

)
(k−1) set b−a = j

=
k−1

∑
j=1

k j−
k−1

∑
j=1

j2 +
(

k+1
k−1

)
(k−1)

= k(
(k−1)k

2
)− (k−1)k(2k+1)

6
+

(k−1)k(k+1)
2

=
k(k−1)

2
6k−2k+1+3

3
= 2

(k−1)k(k+1)
3

.

Thus,

q2
k =

(k−1)k(k+1)
3

.

Let n ≥ 3 and k ≥ 3. Since the degree of each vertex of Dn
k is dependent only on a1 and an, it suffices to partition the vertex set V n

k by

(2,k)− Diophantine Codes a1an, and hence, find the other components of the sequences a2,a3, . . . ,an−1. In other words, we want to find

all Diophantine Codes of kind (n,k), aa2a3 . . .an−1b for given a and b where 1 ≤ a ≤ b ≤ k.Therefore, for each component ab in array (2),

we must compute the number of non-negative integer solutions of the following linear equation:

xa + xa+1 + · · ·+ xb = n−2,
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which equals to (
n−2+((b−a)+1)−1

((b−a)+1)−1

)
=

(
n−2+(b−a)

b−a

)
.

Let b−a = j. Since, 1 ≤ a < b ≤ k then, j = 1,2, . . . ,k−1. Thus,

2qn
k = ∑

v∈V n
k

deg(v)

= ∑
1≤a<b≤k

deg(aa2 . . .an−1b)

=
k−1

∑
i=1

k−i

∑
j=1

(
n−2+ j

j

)
j+ ∑

v∈V n
k

(k−1).

Hence,

2qn
k =

k−1
∑

i=1

k−i
∑

j=1

(n+ j−2
j
)

j+
(n+k−1

k−1
)
(k−1). (3)

In Proposition 2, by a little computing, one can reduce the double sigma into one sigma. Finally, we obtain a closed formula for the

number of edges of this graph.

Proposition 3. For each n ≥ 3 and k ≥ 1 we have,

2qn
k =

k−1
∑

j=1
(k− j) j

(n+ j−2
j
)
+
(n+k−1

k−1
)
(k−1). (4)

For this purpose, it is sufficient to show the following lemma.

Lemma 4. For any positive integers k ≥ 2 and n ≥ 1 we have,

k−1

∑
i=1

k−i

∑
j=1

j
(

n+ j−2
j

)
=

k−1

∑
j=1

(k− j) j
(

n+ j−2
j

)
. (5)

Proof. We will to show that both sides of the equality have the same recurrence relation with the same initial value. For this purpose, we

set the left and right-hand-sides of (5) by f (k) and g(k), respectively. That is,

f (k) =
k−1

∑
i=1

k−i

∑
j=1

j
(

n+ j−2
j

)
,

g(k) =
k−1

∑
j=1

(k− j) j
(

n+ j−2
j

)
.

It is easy to show that, f (1) = g(1) = 0, and f (2) = g(2) =
(n−1

1
)

and so on.

But, for k ≥ 2 we have,

f (k) =
k−1

∑
j=1

j
(

n+ j−2
j

)
+

k−1

∑
i=2

k−i

∑
j=1

j
(

n+ j−2
j

)
.

If we set i−1 = t then,

f (k) =
k−1

∑
j=1

j
(

n+ j−2
j

)
+

k−2

∑
t=1

(k−(1+t))

∑
j=1

j
(

n+ j−2
j

)
That is,

f (k) = f (k−1)+
k−1

∑
j=1

j
(

n+ j−2
j

)
.

On the other hand,

g(k+1) =
k

∑
j=1

((k− j)+1) j
(

n+ j−2
j

)
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=
k

∑
j=1

(k− j) j
(

n+ j−2
j

)
+

k

∑
j=1

j
(

n+ j−2
j

)
.

So,

g(k+1) = g(k)+
k

∑
j=1

j
(

n+ j−2
j

)
.

Thus,

f (k+1)− f (k) = g(k+1)−g(k).

Hence, for each n,k ≥ 1, we have,

f (k) = g(k).

Now, we write a closed formula for the sigma on the right side of equation (4).

Lemma 5. For each n ≥ 3 and k ≥ 3 we have,

k−1
∑

j=1
(k− j) j

(n+ j−2
j
)
= (k−1)(n−1)

(n+k−2
k−2

)
−n(n−1)

(n+k−2
k−3

)
. (6)

Proof. We consider the ordinary generating function

f (x) =
1

(1− x)n−1 =
∞

∑
j=0

(
n+ j−2

j

)
x j.

Now, by the derivative of the function f (x), we have

f
′
(x) =

n−1
(1− x)n =

∞

∑
j=1

j

(
n+ j−2

j

)
x j−1.

Now, define a new generating function g(x) as

g(x) = x f
′
(x) =

(n−1)x
(1− x)n =

∞

∑
j=1

j

(
n+ j−2

j

)
x j.

So,

g
′
(x) =

n−1
(1− x)n +

n(n−1)x

(1− x)n+1 ,

and so,

xg
′
(x) =

(n−1)x
(1− x)n +

n(n−1)x2

(1− x)n+1 =
∞

∑
j=1

j2
(

n+ j−2

j

)
x j+1.

Let,

h(x) = kg(x)− xg
′
(x) =

∞

∑
j=1

(k j− j2)

(
n+ j−2

j

)
x j+1

=
k(n−1)x
(1− x)n − (n−1)x

(1− x)n − n(n−1)x2

(1− x)n+1 .

Suppose, F(x) = h(x)
1−x . Thus we have,

F(x) =
h(x)
1− x

=
k(n−1)x

(1− x)n+1 − (n−1)x

(1− x)n+1 − n(n−1)x2

(1− x)n+2
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=
∞

∑
j=1

(k j− j2)

(
n+ j−2

j

)
x j

∞

∑
i=0

x j

=
∞

∑
t=1

(
t

∑
j=1

(k j− j2)

(
n+ j−2

j

)
)xt

= (k−1)(n−1)x+
∞

∑
j=0

{
k(n−1)

(
n+ j+1

j+1

)
− (n−1)

(
n+ j+1

j+1

)

−n(n−1)
(

n+ j+1
j

)}
x j+2.

Thus,
k−1

∑
j=1

(k− j) j
(

n+ j−2
j

)
= (k−1)(n−1)

(
n+ k−2

k−2

)
−n(n−1)

(
n+ k−2

k−3

)
.

Therefore, we can rewrite Proposition 3 as follows.

Proposition 4. For each n ≥ 3 and k ≥ 3 we have,

2qn
k =

k−1

∑
i=1

k−i

∑
j=1

(
n+ j−2

j

)
j+
(

n+ k−1
k−1

)
(k−1)

=
k−1

∑
j=1

(k− j) j
(

n+ j−2
j

)
+

(
n+ k−1

k−1

)
(k−1).

So,

2qn
k = (k−1)(n−1)

(
n+ k−2

k−2

)
−n(n−1)

(
n+ k−2

k−3

)
+

(
n+ k−1

k−1

)
(k−1).

Example 3. In Fig. (4a), for n = 2 and k = 5, We can easily find out with a few simple calculations

2q2
5 =

5−1

∑
i=1

5−i

∑
j=1

(
5+ j−2

j

)
j+
(

2+5−1
5−1

)
(5−1)

= (2−1)(5−1)
(

2+5−2
5−2

)
−2(2−1)

(
5+2−2

5−3

)
+

(
5+2−1

5−1

)
(5−1)

= 4
(

5
3

)
−
(

5
2

)
+

(
6
4

)
4

= 80.

Hence, q2
5 = 40.

Example 4. In graph Fig.(4b), with a few calculations one can find that

|E4
4 |= q4

4 = 84.

4 Coloring of the D-Graph Dn
k

In this section, we use this labeling, which is key to coloring the vertices. It is customary to number the boxes 0,1, . . . ,k− 1. Thus, far

we have looked at known properties of the Diophantine graphs. we are now ready to proved a new result. The Diophantine graphs are

complicated, but thanks to their symmetry and our convenient labeling, they can easily be colored.

For a positive integer c, a graph can be c-colored if there is a way to label the vertices with the colors 0,1, . . . ,c−1 such that adjacent

vertices are different colors. The chromatic number of a graph G is the smallest number of colors needed and is denoted χ(G). For example,

χ(D1
k) = χ(Kk) = k.
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As, induced subgraph < {11 . . .1an|1 ≤ an ≤ k}> is isomorphic to Kk thus, χ(Dn
k)≥ k. To see that k colors suffice, color the vertex labeled

a1a2 . . .an by the sum of its box numbers modulo k. That is,

f (a1a2 . . .an) = a1 +a2 + · · ·+an mod(k).

To check that f is a k-coloring, observe that two vertices of Dn
k are adjacent if and only if they differ in exactly one place. Hence, we have

the following theorem.

Proposition 5. Let k ≥ 2 and n ≥ 1, then χ(Dn
k) = k.

5 Connectivity
In this section, we want to show that for each (n,k)− Diophanteen graph Dn

k are connected graphs where n,k ≥ 1 are positive integers.

Proposition 6. Let n,k ≥ 1 be positive integer. Thus, the Diophantine graph Dn
k is connected.

Proof. It is sufficient to show that there is a path between any two vertices of the Diophantine graph Dn
k . Let A = a1a2 . . .an and B =

b1b2 . . .bn are two vertices of Dn
k . Define n−string C = A − B = c1c2 . . .cn and call it difference vector, where ci = ai − bi for each

i = 1,2, . . . ,n. There are some coordinates ci’s are positive, negative, or equal to zero, for each i = 1,2, . . . ,n.

Suppose for each i ∈ {i1, i2, . . . , it}, the coordinate ci < 0, where

1 ≤ it < it−1 < .. . < i1 ≤ n,

and for each j ∈ { j1, j2, . . . , js}, c j > 0 where 1 ≤ j1 < j2 < .. . < js ≤ n and for other indices i, ci’s are equal to 0. Let A0 = A. Suppose

i1 be the index of the rightmost bit of C, such that ci1 < 0, then, in A0 we converse ai1 into bi1 and rest the remaining coordinates. Call the

new sequence by A1. Since i1 is the greatest index such that ai1 < bi1 thus, bi1+1 ≤ ai1+1. So ai1−1 ≤ ai1 < bi1 ≤ bi1+1 ≤ ai1+1. Hence,

A1 = a1 . . .ai1−1bi1 ai1+1 . . .an is an admissible string. Since A0 and A1 differ by exactly one coordinate, then, they are adjacent vertices

of the Diophantine graph Dn
k . So, in the same way as above, one can show that for each l, 1 ≤ l ≤ t we can find the vertex Al from Al−1,

by conversing the coordinate ail into bil . Hence, Ail−1 and Ail are differ on exactly one digit, thus, they are adjacent in Dn
k . So, we have

a sequence of consecutive adjacent vertices. Hence, P1 = A0A1 . . .At is a path from A0 through At . Now, set B0 = At . If we compute the

difference vector C = B0 −B then, all its coordinates are non negative, that is; c j ≥ 0 for each j = 1,2, . . . ,n. For each j ∈ { j1, j2, . . . , js}
where 1 ≤ j1 < j2 < .. . < js ≤ n, the coordinates c j of difference vector are positive and all remaining coordinates of the vector are zero.

Let j1 be the least indices of n−string B0 such that c j1 is positive. Replace the j1’th coordinate B0 by j1’th coordinate b j1 . Hence, we obtain

the n−string B1 = a1 . . .a j1−1b j1 a j1+1 . . .an. Since, j1 is the least indices of B0 in which a j1 > b j1 . Thus, b j1−1 ≥ a j1−1. Hence,

a j1−1 ≤ b j1−1 ≤ b j1 < a j1 ≤ a j1+1.

So, the n−string B1 is an admissible string. Since the vertices B0 and B1 differ on exactly one position then, they are adjacent in the

Diophantine graph Dn
k . So, in the same way as above, one can show that for each l, 1 ≤ l ≤ s one can find the vertex Bl from the vertex Bl−1,

by replacing the coordinate a jl by b jl . So, we obtain the consecutive adjacent vertices B0,B1, . . . ,Bs and hence, the path A0A1 . . .AtB1 . . .Bs

from A through B. Thus, the graph Dn
k is connected.

Since the minimum degree of vertices, Dn
k is k−1. Then, κ(Dn

k)≤ k−1. On the other hand the Diophantine graph Dn
k is a subdivision

graph of the complete graph Kk. So, κ(Dn
k)≥ k−1. Hence, we have the following theorem.

Proposition 7. For each n,k ≥ 1 connectivity of the Diophantine graph Dn
k is (k−1). That is, κ(Dn

k) = k−1.

Example 5. Suppose in Fig. 4b, A and B are 2222 and 1234, respectively. Then, the diference vector C is A−B = +0−−. So, by the

above algorithm we have the consecutive adjacent vertices A0 = 2222, A1 = 2224, A2 = 2234 and B1 = 1234. Therefore, P = A0A1A2B1 is

a (shortest) path between the vertices A and B.
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6 Distance Properties of a D-Graphs
One of the most basic parameters of a graph G is the notion of distance. The distance between two vertices in a graph is a simple but

surprisingly useful notion. It has led to the definition of several graph parameters such as the diameter, the radius, the average distance, and

the metric dimension. In this section, we find the radius and diameter of the Diophantine graphs.

Definition 3. Let G be a connected graph. The distance dG(u,v) between two vertices u, v of a graph G is defined as the length of the

shortest path between u and v in G.

Informally and naturally, the distance between u and v equals the least possible number of edges traversed from u to v. Specially

dG(u,u) = 0.

Definition 4. Let G be a graph. We define, concerning G, the following notions:

• The eccentricity of a vertex ecc(v) is the largest distance from v to another vertex;

ecc(v) = max
x∈V (G)

dG(v,x).

• The diameter diam(G) of G is the largest eccentricity over its vertices, and the radius rad(G) of G is the smallest eccentricity over

its vertices.

• The vertex u is a central vertex if ecc(u) = rad(G). The center of G, Z(G) is defined as

Z(G) = {u ∈V (G) | ecc(u) = rad(G)}.

As can be seen, the definition of a Diophantine graph is analogous to that of the Boolean cube. In the following, we show that the

shortest path between two vertices of the Diophantine graph Dn
k is the Hamming distance between them. The Hamming distance between

two strings of equal length is the number of positions at which the corresponding symbols are different. In another way, it measures the

minimum number of substitutions required to change one string into the other. On the other hand, let A = a1a2 . . .an and B = b1b2 . . .bn are

two arbitrary vertices of the Diophantine graph Dn
k . The Hamming distance between A and B is defined as the following function,

H(A,B) =
∣∣∣{i : ai ̸= bi, where A = a1a2 . . .an and B = b1b2 . . .bn}

∣∣∣.
For example, H(11223345,11123455) = 3. Since, the (n,k)−Diophantine graph Dn

k , contains all increasing n−string over the alphabet

{1,2, . . . ,k}, then, two vertices A and B are adjacent if and only if H(A,B) = 1. One can simply show that dDn
k
(A,B) = H(A,B), where

dDn
k
(A,B) is the shortest path between A and B. Indeed, by the proof of the theorem 6, there is a path of length H(A,B) between two vretices

A and B. So, H(A,B)≥ dDn
k
(A,B). Now, suppose P = A0A1 . . .Am is a shortest path between A = A0 and B = Am. Two consecutive vertices

of the path are adjacent iff H(A,B) = 1. So, A and B are different at most in dDn
k
(A,B) positions. Hence, H(A,B) = dDn

k
.

Now, we want to compute the eccentricity of each vertex of the Diophantine graph. Suppose A = a1a2 . . .an be a given vertex of the graph

Dn
k , set Mi(A) = { j|a j = i} where, 1 ≤ j ≤ n and i = 1,2, . . . ,k.

Lemma 6. Let A and B be two arbitrary vertices of the graph Dn
k . Thus, there is a corner vertex i such that, d(A, i)≥ d(A,B).

Proof. Set m = min{|Mi(A)∩Mi(B)| : i = 1,2, . . . ,k}, thus, there is a j where 1 ≤ j ≤ k such that, m = |M j(A)∩M j(B)|. By the definition

of Hamming distance, we have

d(A,B) = n−
k

∑
i=1

|Mi(A)∩Mi(B)| ≤ n−m = d(A, j).

Thus, for calculating the eccentricity of vertexA, it is sufficient to only calculate its distance from the Corner vertices. So,

ecc(A) = max{d(A, i) : i = 1,2, . . . ,k}.

Since, the corner vertices 1 = 11 . . .1 and k = kk . . .k are different on n coordinates, then, diam(Dn
k) = n. Thus we have the following lemma.
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Lemma 7. For each positive integer n ≥ 1and k ≥ 1, the diameter of the Diophantine graph Dn
k is n.

By Lemma 6, for calculating the eccentricity of a vertex A, it is sufficient to only calculate its distance from the Corner vertices. Indeed,

for each vertex A ∈ Dn
k , we have

ecc(A) = max{d(A,X) : X ∈V (Dn
k)}

= max{d(A, i) : i ∈ {1,2, . . . ,k}}

= max{n−ni : i = 1,2, . . . ,k},

where ni = |Mi(A)|. Let A be a vertex of the graph Dn
k , then, by Lemma 6 there is a corner vertex i, such that ecc(A) = n−ni. If ni < ⌊ n

k ⌋,

then n−ni > n−⌊ n
k ⌋. But, the eccentricity of the vertex

B =

n1︷ ︸︸ ︷
1 . . .1

n2︷ ︸︸ ︷
2 . . .2 . . .

nk︷ ︸︸ ︷
k . . .k,

is n−⌊ n
k ⌋ where, ni ≥ ⌊ n

k ⌋ for i = 1,2, . . . ,n. Hence, the vertex A can not be a central vertex. Thus, we have the following lemma.

Lemma 8. rad(Dn
k) = n−⌊ n

k ⌋.

Now, by Lemma 6 and Lemma 8, one can construct many graphs with given radius.

Proposition 8. Let n ≥ 1 and k ≥ 1 be positive integers then, the center Z(Dn
k) is an induced subgraph of the Diophantine graph Dn

k of

order
(r+k−1

k−1
)

where r = n− k⌊ n
k ⌋.

Corollary 1. Let n ≥ 1 and k ≥ 1 be positive integers. then,

a) If n < k then Z(Dn
k)

∼= Dn
k that is, the Diophantine graph is self-center.

b) If k|n then, the Diophantine graph Dn
k is a mono center that is Z(Dn

k)
∼= K1 with center

V (Z(Dn
k)) = {

m︷ ︸︸ ︷
1 . . .1

m︷ ︸︸ ︷
2 . . .2 . . .

m︷ ︸︸ ︷
k . . .k},

where m = n
k .

Example 6. The following figures show some D-graphs with various centers and radii.

(a) Self center graph Z(D2
5) = D2

5 with
radius rad(D2

5) = 2
(b) The center and radius of the D-graph D4

4.

Figure 4. The radius and center of some D-graphs
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