Eccentric Connectivity Index of Nanostar Dendrimer $NS_3[n]$

Document Type : Research Article

Author

Department of Mathematics, Nazarabad Center, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

‎Let G be a molecular graph‎. ‎The eccentric connectivity index‎, ‎$\zeta^c(G)$‎ , ‎is defined as‎, ‎$\zeta^c(G)=\sum\limits_{u\in V(G)}deg(u)ecc(u)$‎, ‎where $deg(u)$ denotes the degree of vertex u and $ecc(u)$ is the largest distance between u and any other vertex v of G‎. ‎In this paper‎, ‎an exact formula for the eccentric connectivity index of nanostar dendrimer $NS_3[n]$ is given.

Keywords


 

Article PDF

1. A. R. Ashrafi, A. Loghman, PI index of armchair polyhex nanotubes, Ars Comb., 80, 193–199 (2006).
2. A. R. Ashrafi, M. Mirzargar, PI, Szeged, edge Szeged indices of an infinite family of nanostar dendrimers, Indian J. Chem., 47A, 538–541 (2008).
3. A. R. Ashrafi, M. Saheli, Computing eccentric connectivity index of a class of nanostar dendrimers, Kragujevac J. Sci., 34, 65–70 (2012).
4. N. De, S. M. A. Nayeem, A. Pal, Computing modified eccentric connectivity index and connective eccentric index of V-phenylenicnano torus, Stud. UBBChem., 59, 129–137 (2014).
5. I. Gutman, P. Khadikar, P. Rajput, S. Karmarkar, The Szeged index of polyacenes, J. Serb. Chem. Soc., 60, 759–764 (1995).
6. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, SpringerVerlag, New York (1986).
7. A. Hedyari, B. Taeri, Wiener and Schultz indices of TUC4C8(R) nanotubes, J. Comp. Thoer. Nanosci., 4, 158–167 (2007).
8. A. Iranmanesh, N. A. Gholami, Computing the Szeged index of styryl benzene dendrimer and triarylamine dendrimer of generation 1-3, Math. Comput. Chem., 62, 371–379 (2009).
9. A. Karbasioun, A. R. Ashrafi, Wiener and detour indices of a new type of nanostar dendrimers, Macedonian J. Chem. Eng., 28, 49–54 (2009).
10. M. Saheli, A. R. Ashrafi, The eccentric connectivity index of nanostar dendrimers, International Journal of Chemical Modeling., 3, 227–232 (2011).
11. V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37, 273–282 (1997). 
Volume 8, Issue 1
July 2023
Pages 19-25
  • Receive Date: 29 December 2023
  • Revise Date: 17 April 2024
  • Accept Date: 20 April 2024
  • Publish Date: 01 May 2024