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Abstract

Let G be a molecular graph. The eccentric connectivity index, ζ c(G) , is defined as, ζ c(G) = ∑
u∈V (G)

deg(u)ecc(u), where deg(u)

denotes the degree of vertex u and ecc(u) is the largest distance between u and any other vertex v of G. In this paper, an exact

formula for the eccentric connectivity index of nanostar dendrimer NS3[n] is given.
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1 Introduction
Chemical graph theory is one of the branches of mathematical chemistry. In chemical graph theory, a variety of concepts from

graph theory are used to model chemical phenomena graphically. In this modeling, each atom is represented by a vertex and each

bond between two atoms is represented by an edge. A topological index for an undirected simple graph G is a numerical value that is

invariant under all graph isomorphisms which correlates to its Physico-chemical properties. Topological indices are used for studying

QSAR (quantitative structure-activity relationships) and QSPR (quantitative structure-property relationships) for foretelling many attributes

of chemical compounds and their biological properties. Various studies have been performed on different topological indices [1–11].

Dendrimers are highly ordered, branched polymeric molecules. They have many applications in gene therapy, nanotechnology, medicine

production, and other fields. Every dendrimer is a macromolecule which made of a core with tree-like arms or branches named dendrons.

The zero generation of a dendrimer is the core molecule of dendrimer without dendrons. Each generation of a dendrimer is made by adding

some new branches along the branches of the previous generation with a specific rule. Our aim in this study is to investigate a special

topological property of dendrimers. The molecular graph of a molecule M is a graph with the finite set of all atoms as its vertex set and

chemical bonds are the edges of this graph. We use the notations G (M), G for short, for this graph, V(G) for its vertex set, and E(G) for the

set of all edges. For each vertex u, deg(u) denotes the degree of u. If x,y ∈V (G) , then the length of a minimum path connecting x and y is

named the distance between x and y and denoted by d(x,y).

Sharma, Goswami, and Madan proposed the eccentric connectivity index of the molecular graph G which is defined as

ζ c(G) = ∑
u∈V (G)

deg(u)ecc(u),
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where ecc(u) = max{d(u,v)|v ∈V (G)} [11].

Ashrafi and Saheli computed the eccentric connectivity index of nanostar dendrimers NS1[n] and NS2[n], see [3, 10] for details. In this

study, we are going to comput the eccentric connectivity index of nanostar dendrimer NS3[n].

2 MAIN RESULTS AND DISCUSSION
NS1[n], NS2[n] and NS3[n] are three types of dendrimers with n generations. NS1[n] (for n=3) is depicted in Fig. 1 and its generator is shown

in Fig. 2.

Figure 1. The molecular graph of NS1[3]

Figure 2. The core of NS1[n]

In [10], Saheli and Ashrafi computed the eccentric connectivity index of nanostar dendrimer NS1[n] as

ζ c(NS1[n]) = 135n×2n+2 +135×2n −50n+179.

NS1[n] (for n=2), and its core, are shown in Figs. 3 and 4, respectively.

In [3], Ashrafi and Saheli computed the eccentric connectivity index of NS2[n] as

ζ c(NS2[n]) = 420n×2n +60×2n −110n+40.

Now, we consider nanostar dendrimer where (Figs. 5 and 6). In the following we try to comput the eccentric connectivity index of

NS3[n].

Theorem 1. The eccentric connectivity index of nanostar dendrimer NS3[n], is computed as

ζ c(NS3[n]) = 29n×2n+5 +741×2n+1 −104n−98,n ≥ 1.
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Figure 3. The molecular graph of NS2[2]

Figure 4. The core of NS2[n]

Figure 5. The molecular graph of NS3[1]

Proof. Considering Figs. 7, 8 and Table 1. It can be seen that there exist 22 types of vertices in NS3[n], based on their positions in branches



Analytical and Numerical Solutions for Nonlinear Equations | 2023, Volume 8, Issue 1 22 of 25

Figure 6. The molecular graph of NS3[2]

of NS3[n] (Fig. 8). Therefore, we have:

ζ c(NS3[n]) = ∑
u∈V (NS3[n])

deg(u)ecc(u)

= 2× (8n+19)×2n+2 +2× (8n+18)×22n+2 +3× (8n+17)×2n+1

+2× (8n+16)×2n+1 +2× (8n+15)×2n+1 +3× (8n+14)×22n+1

+2× (8n+15)×2n+1 +3× (8n+13)×2n+1 +3× (8n+18)×2n+1

+2× (8n+17)×22n+1 +2× (8n+16)×2n+1 +3× (8n+15)×2n+1

+2× (8n+16)×2n+1 +3× (8n+14)×22n+1 +1× (8n+15)×2n+1

+2× (8n+12)×2n+1 +2× (8n+11)×2n+1

+2×
n−1

∑
k=0

(8n−4k+10)× (2n−k+1)+2×
n−1

∑
k=0

(8n−4k+9)× (2n−k+1)

+2× (8n+16)×2n+1 +2×
n−1

∑
k=0

(8n−4k+8)× (2n−k+1)

+3×
n−2

∑
k=0

(8n−4k+7)× (2n−k)+3× (4n+11)×2+2× (4n+10)×2

= 29n×2n+5 +741×2n+1 −104n−98
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Table 1. Types of vertices in NS3[n].

Layer Types of vertices Frequences ecc(u) deg(u)

n 1 2n+2 8n+19 2

n 2 2n+2 8n+18 2

n 3 2n+1 8n+17 3

n 4 2n+1 8n+16 2

n 5 2n+1 8n+15 2

n 6 2n+1 8n+14 3

n 7 2n+1 8n+13 3

n 8 2n+1 8n+15 2

n 9 2n+1 8n+18 3

n 10 2n+1 8n+17 2

n 11 2n+1 8n+16 2

n 12 2n+1 8n+15 3

n 13 2n+1 8n+16 2

n 14 2n+1 8n+14 3

n 15 2n+1 8n+15 1

n 16 2n+1 8n+12 2

n 17 2n+1 8n+11 2

n 18 2n+1 8n+10 2

n 19 2n+1 8n+9 2

n 20 2n+1 8n+8 2

n 21 2n 8n+8 3

For 1 ≤ i ≤ n−1

i 18 2i+1 8i+14 2

i 19 2i+1 8i+13 2

i 20 2i+1 8i+12 2

i 21 2i 8i+11 3

i 22 2 4i+10 2
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Figure 7. The eccentricity of vertices in a quarter of NS3[2]

Figure 8. Types of vertices in a quarter of NS3[2]
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