[1] G. Menezes, Quantum gravity phenomenology from the perspective of quantum general relativity and quadratic gravity, Class. Quant. Grav., 40(23), 235007, (2023).
[2] K. Giesel and H. Sahlmann, From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity, PoS, QGQGS2011, 002, (2011).
[3] L. Amendola, N. Burzilla and H. Nersisyan, Quantum Gravity inspired nonlocal gravity model, Phys. Rev. D, 96(8), 084031, (2017).
[4] E. Sucu, Ë™ I. Sakallı, Ö. Sert and Y. Sucu, Quantum-corrected thermodynamics and plasma lensing in non-minimally coupled symmetric teleparallel black holes, Phys. Dark Univ., 50, 102063, (2025).
[5] A. Al-Badawi, F. Ahmed, O. Donmez, F. Dogan, B. Pourhassan, ˙ I. Sakallı and Y. Sekhmani, Analytic and Numerical Constraints on QPOs in EHT and XRB Sources Using Quantum-Corrected Black Holes, arXiv:2509.08674 [astro-ph.HE].
[6] F. Ahmed, A. Al-Badawi and ˙ I. Sakallı, Quantum Oppenheimer-Snyder Black Hole with Quintessential Dark Energy and a String Clouds: Geodesics, Perturbative Dynamics, and Thermal Properties, arXiv:2508.03202 [gr-qc].
[7] B. S. DeWitt, Quantum Theory of Gravity. I. The Canonical Theory, Phys. Rev., 160, 1113, (1967).
[8] K. V. Kuchaˇ r, Time and interpretations of quantum gravity, Int. J. Mod. Phys. D 20, 3–86, (2011). in Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, 1992.
[9] C. J. Isham, Canonical quantum gravity and the problem of time, NATO Sci. Ser. C, 409, 157–287, (1993).
[10] C. Kiefer, Quantum Gravity, 3rd ed., Oxford University Press, 2012.
[11] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press, 2007.
[12] D. N. Page and W. K. Wootters, Evolution without evolution: Dynamics described by stationary observables, Phys. Rev. D, 27, 2885, (1983).
[13] C. Rovelli, Time in quantum gravity: An hypothesis, Phys. Rev. D, 43, 442, (1991).
[14] E. Anderson, The Problem of Time: Quantum Mechanics versus General Relativity, Springer, 2017.
[15] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press, 2014.
[16] J. J. Halliwell, Introductory Lectures on Quantum Cosmology, in Quantum Cosmology and Baby Universes, eds. S. Coleman et al., World Scientific, 1991.
[17] J. B. Hartle and S. W. Hawking, Wave function of the Universe, Phys. Rev. D, 28, 2960, (1983).
[18] A. Vilenkin, Boundary conditions in quantum cosmology, Phys. Rev. D, 33, 3560, (1986).
[19] D. Brizuela, C. Kiefer, and M. Krämer, Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation, Phys. Rev. D, 94, 123527, (2016).
[20] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer, 1999.
[21] L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, 2003.
[22] T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, 2003.
[23] S. Weinberg, Testing quantum mechanics, Ann. Phys. (N.Y.), 194, 336, (1989).
[24] N. Gisin, Weinberg’s non-linear quantum mechanics and superluminal communications, Phys. Lett. A, 143, 1, (1990).
[25] J. Polchinski, Weinberg’s nonlinear quantum mechanics and the Einstein–Podolsky–Rosen paradox, Phys. Rev. Lett., 66, 397, (1991).
[26] K. Kleidis and V. K. Oikonomou, Loop quantum cosmology-corrected GaussBonnet singular cosmology, Int. J. Geom. Meth. Mod. Phys. 15(04), 1850064, (2017).
[27] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang, Phys. Rev. Lett., 96, 141301, (2006).
[28] M. Bojowald, Loop quantum cosmology, Living Rev. Relativ., 8, 11, (2005).
[29] A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Class. Quantum Grav., 28, 213001, (2011).
[30] G. Tokgöz and Ë™ I. Sakallı, Fermion clouds around z = 0 Lifshitz black holes, Int. J. Geom. Meth. Mod. Phys. 17(09), 2050143, (2020).
[31] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000.
[32] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, 2001.
[33] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, 2011.
[34] Maplesoft, a division of Waterloo Maple Inc., Maple, Waterloo, Ontario, 2019.
[35] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486, (1983).
[36] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567, (1983).
[37] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39, 51, (1986).
[38] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321, (1971).
[39] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, 2nd ed., Springer, 2012.
[40] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349, (1973).
[41] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82, 313, (1983).
[42] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82, 347, (1983).
[43] V. E. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron., 16, 783, (1973).
[44] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74, 160, (1987).
[45] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., 94, 308, (1990).
[46] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, 2006.
[47] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of Bifurcation Theory, ed. P. H. Rabinowitz, Academic Press, 1977.
[48] D. A. Knoll and D. E. Keyes, Jacobian-free NewtonKrylov methods: A survey of approaches and applications, J. Comput. Phys., 193, 357, 2004.
[49] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, 2003.
[50] C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math., 2, 197, (1960).
[51] W. Bao and Q. Du, Computing the ground state solution of BoseEinstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25, 1674, (2004).
[52] X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/GrossPitaevskii equations, Comput. Phys. Commun., 184, 2621, (2013).
[53] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of BoseEinstein condensation in trapped gases, Rev. Mod. Phys., 71, 463, (1999).
[54] G. Teschl, Ordinary Differential Equations and Dynamical Systems, AMS, 2012.
[55] T. Kato, Perturbation Theory for Linear Operators, reprint of the 1980 ed., Springer, 1995.
[56] I. Agulló, A. Ashtekar, and W. Nelson, Quantum gravity extension of the inflationary scenario, Phys. Rev. Lett., 109, 251301, (2012).
[57] P. J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa, 1998.
[58] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, Cambridge University Press, 2010.
[59] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, 2002.
[60] R. Gambini, R. A. Porto, and J. Pullin, Fundamental decoherence from quantum gravity: A pedagogical review, Gen. Relativ. Gravit., 39, 1143, (2007).
[61] A. Ashtekar and E. Wilson-Ewing, Loop quantum cosmology of Bianchi type I models, Phys. Rev. D, 79, 083535, (2009).