Nonlinear Stationary States of a Wheeler--DeWitt-Type Equation: a Minisuperspace Study with a Self-Interacting Scalar Clock

Document Type : Research Article

Author

Physics Department, Eastern Mediterranean University, Famagusta 99628, North Cyprus via Mersin 10, Turkey

Abstract

Quantum gravity phenomenology in black hole physics and cosmology demands frameworks that can bridge quantum effects with classical singularities while remaining amenable to observational constraints. Motivated by effective quantum corrections in black hole thermodynamics and the quest for singularity resolution mechanisms analogous to those explored in loop quantum cosmology, we investigate a minimal nonlinear variant of the Wheeler--DeWitt framework in a flat FRW minisuperspace where a homogeneous scalar field serves as an internal clock. After deparametrization, the physical wavefunction for the scale factor obeys a stationary nonlinear eigenvalue problem on the half-line, with a confining effective potential and a local cubic self-interaction that models quantum-gravitational backreaction or mean-field matter effects. We prove existence of a nodeless ground state under mild assumptions on the potential, develop a controlled perturbation theory at weak coupling, and compute solution families using high-accuracy Chebyshev pseudo-spectral discretizations and continuation methods. Across representative potentials we find a robust, sharply peaked probability density at a nonzero scale factor---a nonsingular quantum bounce---whose location shifts monotonically with the sign and strength of the nonlinearity. This behavior parallels bounce mechanisms in loop-inspired dynamics but emerges from a variational, local nonlinearity in the deparametrized equation. We discuss the interpretation within relational time, connections to effective quantum corrections in gravitational systems, and implications for excited states and time-dependent evolution, providing a transparent analytical and numerical baseline for exploring singularity avoidance in quantum cosmology.

Keywords

Main Subjects


 

Article PDF

[1] G. Menezes, Quantum gravity phenomenology from the perspective of quantum general relativity and quadratic gravity, Class. Quant. Grav., 40(23), 235007, (2023).
[2] K. Giesel and H. Sahlmann, From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity, PoS, QGQGS2011, 002, (2011).
[3] L. Amendola, N. Burzilla and H. Nersisyan, Quantum Gravity inspired nonlocal gravity model, Phys. Rev. D, 96(8), 084031, (2017).
[4] E. Sucu, Ë™ I. Sakallı, Ö. Sert and Y. Sucu, Quantum-corrected thermodynamics and plasma lensing in non-minimally coupled symmetric teleparallel black holes, Phys. Dark Univ., 50, 102063, (2025).
[5] A. Al-Badawi, F. Ahmed, O. Donmez, F. Dogan, B. Pourhassan, ˙ I. Sakallı and Y. Sekhmani, Analytic and Numerical Constraints on QPOs in EHT and XRB Sources Using Quantum-Corrected Black Holes, arXiv:2509.08674 [astro-ph.HE].
[6] F. Ahmed, A. Al-Badawi and ˙ I. Sakallı, Quantum Oppenheimer-Snyder Black Hole with Quintessential Dark Energy and a String Clouds: Geodesics, Perturbative Dynamics, and Thermal Properties, arXiv:2508.03202 [gr-qc].
[7] B. S. DeWitt, Quantum Theory of Gravity. I. The Canonical Theory, Phys. Rev., 160, 1113, (1967).
[8] K. V. Kuchaˇ r, Time and interpretations of quantum gravity, Int. J. Mod. Phys. D 20, 3–86, (2011). in Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, 1992.
[9] C. J. Isham, Canonical quantum gravity and the problem of time, NATO Sci. Ser. C, 409, 157–287, (1993).
[10] C. Kiefer, Quantum Gravity, 3rd ed., Oxford University Press, 2012.
[11] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press, 2007.
[12] D. N. Page and W. K. Wootters, Evolution without evolution: Dynamics described by stationary observables, Phys. Rev. D, 27, 2885, (1983).
[13] C. Rovelli, Time in quantum gravity: An hypothesis, Phys. Rev. D, 43, 442, (1991).
[14] E. Anderson, The Problem of Time: Quantum Mechanics versus General Relativity, Springer, 2017.
[15] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press, 2014.
[16] J. J. Halliwell, Introductory Lectures on Quantum Cosmology, in Quantum Cosmology and Baby Universes, eds. S. Coleman et al., World Scientific, 1991.
[17] J. B. Hartle and S. W. Hawking, Wave function of the Universe, Phys. Rev. D, 28, 2960, (1983).
[18] A. Vilenkin, Boundary conditions in quantum cosmology, Phys. Rev. D, 33, 3560, (1986).
[19] D. Brizuela, C. Kiefer, and M. Krämer, Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation, Phys. Rev. D, 94, 123527, (2016).
[20] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer, 1999.
[21] L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, 2003.
[22] T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, 2003.
[23] S. Weinberg, Testing quantum mechanics, Ann. Phys. (N.Y.), 194, 336, (1989).
[24] N. Gisin, Weinberg’s non-linear quantum mechanics and superluminal communications, Phys. Lett. A, 143, 1, (1990).
[25] J. Polchinski, Weinberg’s nonlinear quantum mechanics and the Einstein–Podolsky–Rosen paradox, Phys. Rev. Lett., 66, 397, (1991).
[26] K. Kleidis and V. K. Oikonomou, Loop quantum cosmology-corrected GaussBonnet singular cosmology, Int. J. Geom. Meth. Mod. Phys. 15(04), 1850064, (2017).
[27] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum Nature of the Big Bang, Phys. Rev. Lett., 96, 141301, (2006).
[28] M. Bojowald, Loop quantum cosmology, Living Rev. Relativ., 8, 11, (2005).
[29] A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Class. Quantum Grav., 28, 213001, (2011).
[30] G. Tokgöz and Ë™ I. Sakallı, Fermion clouds around z = 0 Lifshitz black holes, Int. J. Geom. Meth. Mod. Phys. 17(09), 2050143, (2020).
[31] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000.
[32] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, 2001.
[33] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, 2011.
[34] Maplesoft, a division of Waterloo Maple Inc., Maple, Waterloo, Ontario, 2019.
[35] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486, (1983).
[36] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567, (1983).
[37] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39, 51, (1986).
[38] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321, (1971).
[39] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, 2nd ed., Springer, 2012.
[40] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349, (1973).
[41] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82, 313, (1983).
[42] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82, 347, (1983).
[43] V. E. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron., 16, 783, (1973).
[44] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74, 160, (1987).
[45] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., 94, 308, (1990).
[46] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, 2006.
[47] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of Bifurcation Theory, ed. P. H. Rabinowitz, Academic Press, 1977.
[48] D. A. Knoll and D. E. Keyes, Jacobian-free NewtonKrylov methods: A survey of approaches and applications, J. Comput. Phys., 193, 357, 2004.
[49] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, 2003.
[50] C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math., 2, 197, (1960).
[51] W. Bao and Q. Du, Computing the ground state solution of BoseEinstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25, 1674, (2004).
[52] X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/GrossPitaevskii equations, Comput. Phys. Commun., 184, 2621, (2013).
[53] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of BoseEinstein condensation in trapped gases, Rev. Mod. Phys., 71, 463, (1999).
[54] G. Teschl, Ordinary Differential Equations and Dynamical Systems, AMS, 2012.
[55] T. Kato, Perturbation Theory for Linear Operators, reprint of the 1980 ed., Springer, 1995.
[56] I. Agulló, A. Ashtekar, and W. Nelson, Quantum gravity extension of the inflationary scenario, Phys. Rev. Lett., 109, 251301, (2012).
[57] P. J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa, 1998.
[58] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, Cambridge University Press, 2010.
[59] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, 2002.
[60] R. Gambini, R. A. Porto, and J. Pullin, Fundamental decoherence from quantum gravity: A pedagogical review, Gen. Relativ. Gravit., 39, 1143, (2007).
[61] A. Ashtekar and E. Wilson-Ewing, Loop quantum cosmology of Bianchi type I models, Phys. Rev. D, 79, 083535, (2009). 
Volume 10, Issue 1
December 2025
Pages 134-152
  • Receive Date: 12 October 2025
  • Revise Date: 30 November 2025
  • Accept Date: 15 December 2025
  • Publish Date: 17 December 2025