$C_{0}$-Groups and $C$-Groups on Non-Archimedean Quasi-Banach Spaces

Document Type : Research Article

Author

C. High school of Hauman El fetouaki, Had Soualem, Morocco

Abstract

In this paper, we introduce and study  $C_{0}$-groups and $C$-groups of bounded linear operators on non-Archimedean quasi-Banach spaces over $\mathbb{K}.$ In particular,  we show some results related to them. In contrast with the classical framework, the parameter of $C_{0}$-groups and $C$-groups families of bounded linear operators belongs to a open ball $\Omega_{r}$ of a non-Archimedean field $\mathbb{K}.$ As an illustration, we shall discuss the solvability of some homogeneous $p$-adic differential equations for $C_{0}$-groups and $C$-groups. Also, we provide some examples to illustrate our study.

Keywords

Main Subjects


 

Article PDF

[1] A. Bayoumi, Foundations of complex analysis in non locally convex spaces: function theory without convexity condition, in: Mathematics Studied 193, North Holland, Amsterdam, New York, Tokyo, 2003.
[2] T. Diagana, F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016.
[3] T. Diagana, C0-semigroups of linear operator on some ultrametric Banach spaces, International Journal of Mathematics and Mathematical Science, 1–9, (2006).
[4] J. Ettayb, Spectral Theory of Linear Operators on Non-Archimedean Quasi-Banach Spaces, p-Adic Num. Ultra. Anal., 16(4), 351–374 (2024).
[5] J. Ettayb, Mixed C-cosine families of continuous linear operators on a complex p-Banach spaces, Pan-American Journal of Mathematics, 4, 4 (2025).
[6] S. G. Gal, J. A. Goldstein, Semigroups of linear operators on p-Fréchet spaces, 0 < p < 1, Acta Math. Hungar., 114(12), 13–36 (2007).
[7] K. Iséki, On finite dimensional quasinorm spaces, Proc. Japan Acad., 35, 536–537 (1959).
[8] K. Iséki, An approximation problem in quasi-normed spaces, Proc. Japan Acad., 35(8), 465–466 (1959).
[9] K. Iséki, A class of quasi-normed spaces, Proc. Japan Acad., 36(1), 22–23 (1960).
[10] T. Konda, On quasi-normed space. I, Proc. Japan Acad., 35(7), 340–342 (1959).
[11] T. Konda, On quasi-normed space.
II, Proc. Japan Acad., 35(10), 584–587 (1959).
[12] T. Konda, On quasi-normed space.
III, Proc. Japan Acad., 36(4), 1959 (1959).
[13] T. Konda, On quasi-normed spaces over fields with non-archimedean valuation, Proc. Japan Acad., 36(9), 543–546 (1960).
[14] L. A. Lujsternik, W. L. Sobolew, Elemente der Funktionalanalysis, Berlin, 1955.
[15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci, vol. 44, Springer-Verlag, 1983.
[16] W. H. Schikhof, Ultrematric Calculus, Cambrige University Press, Cambridge, 1984.
[17] W. H. Schikhof, C. Perez-Garcia, Locally Convex Spaces over Non-archimedean Fields, Cambridge Studies and Advanced Mathematics, 119, 2010. 
Volume 9, Issue 1
May 2024
Pages 114-132
  • Receive Date: 02 June 2025
  • Revise Date: 01 July 2025
  • Accept Date: 18 July 2025
  • Publish Date: 07 August 2025