1. W.G. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. London Math. Soc., 3(55), 359–377 (1999).
2. H.G. Dales, Banach Algebra and Automatic Continuity, Oxford, (2000).
3. F. Ghahramani, R.J. Loy, Approximate amenability of tensor products of Banach algebras, J. Math. Anal. Appl., 454(2), 1–16 (2017).
4. F. Ghahramani, R.J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, 229–260 (2004).
5. F. Ghahramani, R.J. Loy, Y. Zhang, Generalized notions of amenability, II, J. Funct. Anal., 254 (7), 1776–1810 (2008).
6. A. Ya. Helemskii, Homological essence of amenability in the sence of A. Connes: the injectivity of the predual bimodule (translated from the Russian), Math. USSR-Sb, 68, 555–566 (1991).
7. B.E. Johnson, Cohomology in Banach algebra, Mem. Amer. Math. Soc., 127, (1972).
8. B.E. Johnson, Derivation from L1(G) into L1(G) and L1(G), Lecture Notes in Math., 1359, Springer, Berlin, 191–198 (1988).
9. B.E. Johnson, R.V. Kadison and J. Ringrose, Cohomology of operator algebras, III, Bull. Soc. Math. France, 100, 73–79 (1972).
10. V. Runde, Amenability for dual Banach algebras, Studia Math., 148, 47–66 (2001).
11. V. Runde, Lectures on the Amenability, Springer-Verlag Berlin Heideberg, New York (2002).