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Abstract Let A be a Banach algebra and X a Banach A-bimodule, the
derivation D : A → X is semi-inner if there are ξ, µ ∈ X such that D(a) =
a.ξ − µ.a, (a ∈ A). A is called semi-amenable if every derivation D : A → X ∗

is semi-inner. The dual Banach algebra A is Connes semi-amenable (resp.
approximately semi-amenable) if, every D ∈ Z1

w∗(A,X ), for each normal,
dual Banach A-bimodule X , is semi -inner (resp. approximately semi-inner).
We will investigate on some properties of semi-amenability and Connes semi-
amenability of Banach algebras which former have been studied for amenabil-
ity case.
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1 Introduction

The systematic study of the notion of amenability has its origin in the begin-
ning of the modern measure theory in the earlier part of the twentieth century.
It is worthwhile to say that the theory of amenable Banach algebras begins
from B. E. Johnson’s memoir [7], and the choice of terminology comes from
Theorem 2.5 in [7]. The purpose of this note is to give an overview of what has
been done so far on semi-amenability and various notions of semi-amenability
and raise some problems in semi-amenability and Connes semi-amenability of
Banach algebras.
First, we recall some standard notions; for further details, see [3, 4, 5, 11].
Let A be a Banach algebra and X a Banach A-bimodule. A bounded lin-
ear mapping D : A → X is a derivation if D(ab) = D(a)b + aD(b), for all
a, b ∈ A. For each x ∈ X , the mapping δx(a) = ax − xa, (a ∈ A) is a con-
tinuous derivation, called an inner derivation. A Banach algebra A is called
amenable (resp. contractible) if for each Banach A-bimodule X every continu-
ous derivation D from A into X ∗ (resp. into X ) is inner i.e. H1(A,X ∗) = {0}
(resp. H1(A,X ) = {0}), where H1(A,X ∗) is the first cohomology group of A
with coefficients in X ∗ [7].

Let A be a Banach algebra and X be a Banach A-bimodule. A derivation
D : A → X is approximately inner if there exits a net (ξα)α in X , such that
D(a) = limα(a.ξα−ξα.a), (a ∈ A) where the limit being in norm topology of X
for more information see [5]. A Banach algebra A is approximately amenable
(resp. approximately contractible) if for any Banach A-bimodule X , every
derivation from A into X ∗ (resp. into X ) is approximately inner, for more
details see [5].
For Banach algebra A and Banach A-bimodule X the derivation D : A → X
is semi-inner if there are ξ, µ ∈ X such that D(a) = a.ξ − µ.a, (a ∈ A) [3]. A
is called semi-amenable if every derivation D : A → X ∗ is semi-inner.
We will sometimes abbreviate the phrase ”bounded approximate identity” to
B.A.I.
We recall that, for Banach algebras A and B, the l1-direct sum A⊕B equipped
with the multiplication (a, b).(c, d) := (ac, bd) is a Banach algebra.

2 Some notes on contractible and approximate contractible of
Banach algebras

In this section, we will study some properties of contractible and approximate
contractible Banach algebras which former have been studied for amenable
case. We remark that a diagonal for a Banach algebra A, is an element d ∈
A⊗̂A such that,

1. aπ
A
(d) = a = π

A
(d)a,

2. a.d = d.a,

for each a ∈ A. Where π
A
: A⊗̂A → A is the natural extension of the product

map a⊗ b→ ab. For Banach algebras A and B, the projective tensor product
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A⊗̂B, is the completion of A⊗B, with respect to projective tensor norm and
A⊗̂B is a Banach algebra by canonical multiplication specified with

(a⊗ b).(c⊗ d) := (ac⊗ bd), (a, c ∈ A and b, d ∈ B)

.

Theorem 1 Let A be a Banach algebra. Then the following statements are
equivalent.

1. A is contractible.
2. A is unital and has a diagonal.
3. A is semi-simple and finite dimensional.

Proof. See [2] Theorem 1.9.21.

In the following, we give some examples from contractible Banach algebras.

Example 1 (i) Suppose that Mn, (n ∈ N) is full matrix algebra of n × n
complex matrices. Thus Mn is unital, and let {Ej,i : j, i = 1, ..., n} be the set
of canonical matrix units. Letting,

M :=
1

n

n∑

i,j=1

Ej,i ⊗ Ei,j .

It’s easily verified that M is a diagonal for Mn, thus Mn is contractible by
Theorem 1.
(ii) Let lp = lp(N), (1 ≤ p <∞) be Banach sequence algebra under pointwise
operations. Set En = Σn

i=1δi, (n ∈ N) where δi is characteristic function of {i}
for i ∈ N. We set An = Enl

p (n ∈ N), which is a finite-dimensional semi-simple
subalgebra of lp, and hence by Theorem 1 An, (n ∈ N) is contractible.

Proposition 1 Let A and B be Banach algebras and I be a closed ideal of A.

1. If B is contractible and dense Banach subalgebra of A, then A is con-
tractible.

2. If B is contractible and θ : B → A is a continuous homomorphism with
dense range, then A is contractible.

3. If I and A
I are contractible, then A is contractible.

4. If A and B are contractible, then A⊗̂B is contractible.

Proof. 1. Let X be a Banach A-bimodule and D ∈ Z1(A,X ) be a continuous
derivation. Since B = A, so for each a ∈ A, there is a net (bα)α in B such
that bα → a in norm topology of A, thus for some µ ∈ X , we have

D(a) = lim
α

D(bα) = lim
α
(bα.µ− µ.bα) = a.µ− µ.a.

So A is contractible.
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2. Let X be a Banach A-bimodule. Then X has B-bimodule structure defined
by b.x := θ(b)x, x.b := xθ(b). Now let D ∈ Z1(A,X ) be a continuous
derivation. Thus Doθ ∈ Z1(B,X ), and due to the contractibility of B, is
inner. So for some ξ ∈ X , we have

Doθ(b) = b.ξ − ξ.b = θ(b)ξ − ξθ(b).

Since for each a ∈ A there is a net (bα)α in B which θ(bα) → a in norm
topology of A. Then

D(a) = lim
α

D(θ(bα))

= lim
α
(D ◦ θ)(bα)

= lim
α
(bα.ξ − ξ.bα)

= lim
α
(θ(bα)ξ − ξθ(bα))

= a.ξ − ξ.a

for each a ∈ A. It follows that D is inner and B is contractible.
3. It is analogously arguing as in amenable case [[7] Proposition 5.1].
4. Since A and B are contractible, then by Theorem 1, there exist diagonals
MA and MB of A and B, respectively. So

MA ⊗MB ∈ (A⊗̂A)⊗̂(B⊗̂B) ∼= (A⊗̂B)⊗̂(A⊗̂B)

is a diagonal of A⊗̂B.

Theorem 2 Let A and B be Banach algebras.
Then A and B are contractible if and only if A⊕ B is contractible.

Proof. Let X be a Banach A⊕B-bimodule and D ∈ Z1(A⊕B,X ) be continu-
ous. Then X is a Banach A ( and B)-bimodule by following module operations,

a.x := (a, 0)x, x.a := x(a, 0),

(and b.x := (0, b)x, x.b := x(0, b)).

We define D1 : A → X ∗ with D1(a) = D(a, 0). Obviously, D1 is a continuous
derivation. Thus according to contractibility of A, D1 = δy, for some y ∈ X .
So D∼ = (D − δy) ∈ Z1(A ⊕ B,X ) and D∼|

A(∼=A⊕{0B}) = {0}. Hence D∼ :
B(∼= {0A} ⊕ B) → X is a continuous derivation. Therefore D∼ = δz , for some
z ∈ X . Consequently, D = δy + δz = δy+z and A⊕ B is contractible.

Conversely, let X and Y be Banach A-bimodule and B-bimodule, respectively.
Let D1 ∈ Z1(A,X ) and D2 ∈ Z1(B,Y) be continuous. Then X⊕Y is a Banach
A⊕ B-bimodule by following module actions

(a, b).(x, y) := (ax, by),

(x, y).(a, b) := (xa, yb).
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The mapping
D : A⊕ B → X ⊕ Y,

D(a, b) = (D1(a),D2(b)),

is a continuous derivation as follows,

D[(a, b)(c, d)] = D(ac, bd) = (D1(ac),D2(bd))

= (D1(a).c+ a.D1(c),D2(b).d+ b.D2(d)),

[D(a, b)].(c, d) = (D1(a),D2(b)).(c, d)

= (D1(a).c,D2(b).d),

(a, b).[D(c, d)] = (a, b).(D1(c),D2(d))

= (a.D1(c), b.D2(d)).

Thus, we have

D[(a, b)(c, d)] = D(a, b).(c, d) + (a, b).D(c, d).

So by assumption D is inner. Then there is a ψ = (x, y) ∈ X ⊕ Y such that
for each (a, b) ∈ A⊕ B,

(D1(a),D2(b)) = D(a, b)

= (a, b).ψ − ψ.(a, b)

= (a, b).(x, y)− (x, y).(a, b)

= (ax− xa, by − yb).

Consequently, D1 and D2 are inner. Hence A and B are contractible.

Theorem 3 Let A and B be Banach algebras. Suppose that A⊕B is approx-
imately contractible, then so are A and B.

Proof. Let X be a Banach A-bimodule, and Y be a Banach B-bimodule, and
D1 ∈ Z1(A,X ) and D2 ∈ Z1(B,Y), be continuous derivations. Then X ⊕Y is
a Banach A⊕ B-bimodule by following multiplications,

(x, y).(a, b) := (xa, yb),

(a, b).(x, y) := (ax, by).

Now we define
D : A⊕B → X ⊕ Y,

D(a, b) = (D1(a),D2(b)).

D is a continuous derivation as follows,

D[(a, b)(c, d)] = D(ac, bd) = (D1(ac),D2(bd))
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= (D1(a).c+ a.D1(c),D2(b).d+ b.D2(d))

= (D1(a).c,D2(b).d) + (a.D1(c), b.D2(d))

= (D1(a),D2(b)).(c, d) + (a, b).(D1(c),D2(d))

= D(a, b).(c, d) + (a, b).D(c, d).

So there exist a net (ξα)α in X ⊕ Y, specified by ξα = (xα, yα), such that

(D1(a),D2(b)) =

D(a, b) = lim
α
((a, b).ξα − ξα.(a, b))

= lim
α
(axα − xαa, byα − yαb).

Hence D1 and D2 are approximately inner and A, B are approximately con-
tractible.

Since approximately contractibility is equivalent approximately amenabil-
ity [5, Theorem 2.1], so we have a similar version of this theorem for approxi-
mately amenability case which the proof is analogue almost verbatim.

Corollary 1 If A ⊕A is approximately contractible, then A has an approxi-
mate identity.

Proof. It is an immediate consequence of Theorems 1 and 3.

3 Connes amenability and Connes semi-amenability of Banach
algebras

In 1972 Johnson, Kadison and Ringrose introduced a notion of amenability for
von Neumann algebras in [9] which modified Johnson’s original definition for
amenability of Banach algebras in the sense that it takes the dual space struc-
ture of a von Neumann algebra into account. This notion of amenability was
later called Connes-amenability by A. Ya. Helemskii in [6]. Later V. Runde
extended the notion of Connes-amenability to the larger class of dual Banah al-
gebras [11]. A Banach algebraA is said to be dual if there is a closed submodule
A∗ ofA∗, such thatA = (A∗)

∗. For a dual Banach algebraA, a dual BanachA-
bimodule X is called normal if, for each x ∈ X the maps a→ a.x and a→ x.a
fromA into X , are w∗-continous. A dual Banach algebraA is Connes-amenable
if, for every normal, dual Banach A-bimodule X , every w∗-continuous deriva-
tion D : A → X is inner. We denote Z1

w∗(A,X ) for the w∗-continuous deriva-
tions from A into X and H1

w∗(A,X ) = Z1
w∗(A,X )/N 1(A,X ).

Example 2 For a locally compact groupG,M(G) the Banach algebra of complex-
valued, regular Borel measures on G, is dual Banach algebra with predual
C0(G). Also if A is an Arens regular Banach algebra, then A∗∗ is a dual
Banach algebra with predual A∗. All von Neumann algebras, and for reflex-
ive Banach space X , the Banach algebra of all bounded operators on X , i.e.
B(X ) = (X⊗̂X ∗)∗, are dual Banach algebras.
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Definition 1 The dual Banach algebra A is Connes semi-amenable (resp.
Connes approximately semi-amenable) if, every D ∈ Z1

w∗(A,X ), for each nor-
mal, dual Banach A-bimodule X , is semi-inner (resp. approximately semi-
inner).

Lemma 1 Let A be a dual Banach algebra. Suppose that A is Connes-amenable
(or Connes semi− amenable) then it is unital.

Proof. By assumption H1
w∗(A,X ) = 0, for every normal, dual Banach A-

bimodule X . So the remainder of proof is analogous to argument of Proposition
4.1 in [10], almost verbatim.

Proposition 2 Let A be Banach algebra, and B be a dual Banach algebra,
and let θ : A → B be a continuous homomorphism with w∗-dense range. Then

1. If A is amenable, then B is Connes-amenable.
2. If A is dual and Connes-amenable, and if θ is w∗-continuous, then B is

Connes-amenable.

Proof. 1. Let X be a normal, dual Banach B-bimodule and D ∈ Z1
w∗

(B,X ).
Then X is a normal, dual Banach A-bimodule by following multiplication

x.a := xθ(a), a.x := θ(a)x,

so Doθ ∈ Z1
w∗(A,X ). By duality of X , there exists X∗ ⊆ X ∗ a closed

submodule of X ∗ such that X = (X∗)
∗, now by amenability of A there

exists ξ ∈ X ,
D ◦ θ(a) = a.ξ − ξ.a = θ(a)ξ − ξθ(a).

Since θ(A)
w∗

= B, so for each b ∈ B there exists a net (aα)α in A such
that θ(aα) → b in w∗-topology of B, and we have

D(b) = D(w∗ − lim
α
θ(aα))

= w∗ − lim
α
D(θ(aα))

= w∗ − lim
α
(θ(aα)ξ − ξθ(aα))

= b.ξ − ξ.b.

Consequently, D is inner and B is Connes-amenable.

2. Let X be a normal, dual Banach B-bimodule, and D ∈ Z1
w∗(B,X ). So by a

similar argument as in (a), X is A-bimodule and D◦θ ∈ Z1
w∗(A,X ). There-

fore by assumption Doθ and consequently D is inner. Thus B is Connes
amenable.

Corollary 2 Let A be a Arens regular Banach algebra. If A is amenable then
A∗∗ is Connes-amenable.
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Proof. Let π : A → A∗∗ be canonical embedding, which is a continuous ho-
momorphism. Firstly, A∗∗ is a dual Banach algebra and according to Golds-

tine’s Theorem π(A)
w∗

= A∗∗. Therefore by Proposition 2 (a), A∗∗ is Connes-
amenable.

Theorem 4 Let A and B be dual Banach algebras.
Then A⊕B is Connes-amenable (resp. Connes semi−amenable) if and only
if A and B are Connes-amenable (resp. Connes semi− amenable).

Proof. Let X and Y be normal, dual and Banach A and B-bimodule, respec-
tively. Let D1 ∈ Z1

w∗(A,X ) and D2 ∈ Z1
w∗(B,Y). So X ⊕ Y is normal, dual

and Banach A⊕ B-bimodule by module operations defined with

(a, b).(x, y) := (ax, by), (x, y).(a, b) := (xa, yb).

The mapping

D∼ : A⊕ B → X ⊕ Y

D∼(a, b) = (D1(a),D2(b))

is a derivation, since

D∼[(a, b)(c, d)] = D∼(ac, bd)

= (D1(ac),D2(bd))

= (D1(a).c+ a.D1(c),D2(b).d+ b.D2(d)).

[D∼(a, b)].(c, d) = (D1(a),D2(b)).(c, d)

= (D1(a).c,D2(b).d).

(a, b).[D∼(c, d)] = (a, b).(D1(c),D2(d))

= (a.D1(c), b.D2(d)).

Thus,

D∼[(a, b)(c, d)] = [D∼(a, b)].(c, d) + (a, b).[D∼(c, d)]

and by w∗-continuity of D1 and D2 we conclude D∼ ∈ Z1
w∗(A⊕B,X ⊕Y). So

due to the Connes-amenability (resp. Connes semi− amenability) of A⊕B,
D∼ is inner (resp. semi − inner). Thus there is a ψ = (x, y) (resp. µ =
(x′, y′), η = (x′′, y′′)) in X ⊕ Y such that for each (a, b) ∈ A⊕ B we have

(D1(a),D2(b)) = D∼(a, b)

= (a, b).ψ − ψ.(a, b)

= (a, b).(x, y)− (x, y).(a, b)

= (ax− xa, by − yb).
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(resp. (D1(a),D2(b)) = D∼(a, b)

= (a, b).µ− η.(a, b)

= (a, b).(x′, y′)− (x′′, y′′).(a, b)

= (ax′ − x′′a, by′ − y′′b).)

Consequently, D1 and D2 are inner (resp. semi− inner) and A and B are
Connes-amenable (resp. Connes semi− amenable).
For the converse we argue Connes-amenability case and Connes semi-amenability
holds similarly. Let X be a normal, dual Banach A ⊕ B-bimodule and D ∈
Z1

w∗(A ⊕ B,X ). Then X is a normal, dual Banach A (and B)-bimodule by
following multiplications,

a.x := (a, 0)x, x.a := x(a, 0),

(and b.x := (0, b)x, x.b := x(0, b)).

We define D1 : A → X with D1(a) = D(a, 0). Obviously, D1 is a w
∗-continuous

derivation. Thus according to Connes-amenability of A, D1 = δy, for some y ∈
X . So D∼ = (D−δy) ∈ Z1

w∗(A⊕B,X ) and D∼|
A
= {0}. Hence D∼ : B → X is

a w∗-continuous derivation. ThereforeD∼ = δz , for some z ∈ X . Consequently,
D = δy + δz = δy+z and A⊕ B is Connes-amenable.

Proposition 3 Suppose that A and B are dual Banach algebras.

1. Let B be a dense Banach subalgebra of A. If B is Connes semi-amenable
then so is A.

2. Let θ : B → A be a continuous epimorphism. If B is Connes semi-amenable
(resp. approximately Connes semi− amenable) then so is A.

Proof. Let X be a normal, dual Banach A-bimodule and D ∈ Z1
w∗(A,X ).

1. Since B = A, so for each a ∈ A, there is a net (bα)α in B such that bα → a
in norm topology of A. Also D|B ∈ Z1

w∗(B,X ), thus there exist µ, η ∈ X
such that, for each a ∈ A we have

D(a) = w∗ − lim
α

D(bα)

= w∗ − lim
α
(bα.µ− η.bα)

= a.µ− η.a

so A is Connes semi-amenable.
2. X is a normal, dual Banach B-bimodule with actions induced via θ as

follows,
b.x := θ(b)x, x.b := xθ(b),

for b ∈ B and x ∈ X . For b, b′ ∈ B we have

D ◦ θ(bb′) = D(θ(bb′)) = D(θ(b).θ(b′))

= D(θ(b)).θ(b′) + θ(b).D(θ(b′))
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= D ◦ θ(b).b′ + b.D ◦ θ(b′).

So D ◦ θ ∈ Z1
w∗(B,X ).

By assumption, D ◦ θ is semi-inner (resp. approximately semi − inner).
Thus there are ξ, ζ ∈ X (resp. nets (ξα)α and (ζα)α in X ) such that for
each b ∈ B,

D ◦ θ(b) = b.ξ − ζ.b = θ(b).ξ − ζ.θ(b).

(resp. D ◦ θ(b) = lim
α
(b.ξα − ζα.b)

= lim
α
(θ(b).ξα − ζα.θ(b)).)

Since θ(B) = A, so for each a ∈ A

D(a) = a.ξ − ζ.a.

(resp. D(a) = lim
α
(a.ξα − ζα.a).)

Consequently, A is Connes semi-amenable (resp. approximately Connes
semi-amenable).

Theorem 5 Let A be a dual Banach algebra. Then A is Connes semi-amenable
if and only if for each D ∈ Z1

w∗(A,X ) and normal, dual Banach A-bimodule
X , there are bounded nets (xα)α and (yα)α in X such that, for all a ∈ A,
D(a) = limα(a.xα − yα.a) = limα δxα,yα

(a) in norm topology of X .

Proof. Let the dual Banach algebra A be Connes semi-amenable and D ∈
Z1

w∗(A,X ) for normal, dual Banach A-bimodule X . Since X ∗∗ has a dual A-
bimodule structure so D can be viewed as mapping into X ∗∗. By hypothesis
there are F,G ∈ X ∗∗, such that D(a) = a.F − G.a. Let (xα)α and (yα)α be
bounded nets in X , which x̂α → F and ŷα → G in w∗-topology on X ∗∗. For
f ∈ X ∗ we have

〈f,D(a)〉 = 〈f, a.F −G.a〉

= 〈f.a, F 〉 − 〈a.f,G〉

= lim
α
〈f.a, x̂α〉 − lim

α
〈a.f, ŷα〉

= lim
α
〈xα, f.a〉 − lim

α
〈yα, a.f〉

= lim
α
〈a.xα, f〉 − lim

α
〈yα.a, f〉

= lim
α
〈a.xα − yα.a, f〉.

So D(a) = w − limα(a.xα − yα.a) in weak topology of X . Now by passing
to convex combination and using the fact that the weak closure of a convex
set is the same as it’s norm closure, then we have D(a) = limα(a.xα − yα.a) =
limα δxα,yα

(a).

Conversely, let D be a w∗-continuous derivation from A into a normal, dual
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Banach A-bimodule X . So by assumption there are bounded nets (xα)α and
(yα)α in X , such that D(a) = limα(a.xα − yα.a) in the norm topology of X .
Let x0 and y0 be the w∗-cluster points of (xα)α and (yα)α in X , respectively.
By w∗-continuity of the module action in a normal, dual A-bimodule, we then
get D(a) = a.x0 − y0.a, for all a ∈ A. Therefore D is semi-inner and A is
Connes semi-amenable.

Theorem 6 [11] Let A be an Arens regular Banach algebra which is an ideal
in A∗∗. Then A is semi-amenable if and only if A∗∗ is Connes semi-amenable.

Proof. Let A be semi-amenable, X be a normal, dual Banach A∗∗-bimodule
and D ∈ Z1

w∗(A∗∗,X ). Let D1 be the restriction of D on A. So D1 ∈ Z1
w∗(A,X )

and by assumption D1 is semi-inner. Thus there are µ, η ∈ X such that, for
each a ∈ A,

D1(a) = a.µ− η.a.

Let F ∈ A∗∗, so by Goldstine’s Theorem there exists a bounded net (aα)α in
A such that aα → F in w∗-topology of A∗∗. Then by w∗-continuity of module
actions we have

D(F ) = w∗ − lim
α

D(aα)

= w∗ − lim
α

D1(aα)

= w∗ − lim
α
(aα.µ− η.aα)

= F.µ− η.F.

Therefore A∗∗ is Connes semi-amenable.
Conversely, let A∗∗ be Connes semi-amenable. Then by Lemma 1, A∗∗ has
an identity element. Consequently, A as a closed two-sided ideal of A∗∗ has
a bounded approximate identity, say (eα)α in A. The remainder of proof is
verbatim analogue of Theorem 4.4.8 in [11].
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