[1] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
[2] D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional dynamics and control, Springer Science & Business Media, 2011.
[3] J. Klafter, S. Lim, R. Metzler, Fractional dynamics: recent advances, World Scientific, 2012.
[4] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
[5] D. L. Turcotte, Fractals and chaos in geology and geophysics, Cambridge university press, 1997.
[6] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2022.
[7] D. Kai, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer, 2010.
[8] H. C. Tuckwell, Introduction to Theoretical Neurobiology, Cambridge Studies in Mathematical Biology, Cambridge University Press, 1988.
[9] Y. Lin, X. Li, C. Xu, Finite difference/spectral approximations for the fractional cable equation, Mathematics of Computation 80(275), 1369–1396, (2011).
[10] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339(1), 1–77, (2000).
[11] M. Abbaszadeh, M. Dehghan, Y. Zhou, Alternating direction implicit-spectral element method (adi-sem) for solving multi-dimensional generalized modified anomalous sub-diffusion equation, Computers & Mathematics with Applications, 78(5), 1772–1792, (2019).
[12] I. Karatay, N. Kale, A new difference scheme for fractional cable equation and stability analysis, International Journal of Applied Mathematics Research, 4(1), 52, (2015).
[13] T. Langlands, B. Henry, S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, Journal of mathematical biology, 59, 761–808, (2009).
[14] F. Liu, Q. Yang, I. Turner, Two new implicit numerical methods for the fractional cable equation, Journal of Computational and Nonlinear Dynamics, 6(1), 011009, (2011).
[15] H. Zhang, X. Yang, X. Han, Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation, Computers & Mathematics with Applications, 68(12), 1710–1722, (2014).
[16] M. Dehghan, M. Abbaszadeh, Analysis of the element free galerkin (efg) method for solving fractional cable equation with dirichlet boundary condition, Applied Numerical Mathematics, 109, 208–234, (2016).
[17] C. Bédard, A. Destexhe, A modified cable formalism for modeling neuronal membranes at high frequencies, Biophysical journal, 94(4), 1133–1143, (2008).
[18] B. Wang, A. S. Aberra, W. M. Grill, A. V. Peterchev, Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields, Journal of neural engineering, 15(2), 026003, (2018).
[19] J. Quintana-Murillo, S. Yuste, An explicit numerical method for the fractional cable equation, International Journal of Differential Equations, 2011(1), 231920, (2011).
[20] P. Zhuang, F. Liu, I. Turner, V. Anh, Galerkin finite element method and error analysis for the fractional cable equation, Numerical Algorithms, 72, 447–466, (2016).
[21] J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001.
[22] R. Kirby, Z. Yosibash, Solution of von-kármán dynamic non-linear plate equations using a pseudo-spectral method, Computer Methods in Applied Mechanics and Engineering, 193(6), 575–599, (2004).
[23] A. Krischok, B. Yaraguntappa, M.-A. Keip, Fast implicit update schemes for cahnhilliard-type gradient flow in the context of fourier-spectral methods, Computer Methods in Applied Mechanics and Engineering, 431, 117220, (2024).
[24] J. Zavodnik, M. Brojan, Spherical harmonics-based pseudo-spectral method for quantitative analysis of symmetry breaking in wrinkling of shells with soft cores, Computer Methods in Applied Mechanics and Engineering, 433, 117529, (2025).
[25] W. Tian, H. Zhou, W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Mathematics of Computation 84(294), 1703–1727, (2015).
[26] Z. Wang, S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, Journal of Computational Physics, 277, 1–15, (2014).
[27] J. Wang, T. Liu, H. Li, Y. Liu, S. He, Second-order approximation scheme combined with h1-galerkin mfe method for nonlinear time fractional convection–diffusion equation, Computers & Mathematics with Applications, 73(6), 1182–1196, (2017).
[28] P. R. Smith, I. E. Morrison, K. M. Wilson, N. Fernandez, R. J. Cherry, Anomalous diffusion of major histocompatibility complex class i molecules on hela cells determined by single particle tracking, Biophysical journal, 76(6), 3331–3344, (1999).
[29] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Vol. 23, Springer Science and Business Media, 2008.
[30] R. Horn, C. Johnson, Matrix Analysis, Cambridge: Cambridge Univ. Press, 1990.
[31] H. Ding, C. Li, High-order compact difference schemes for the modified anomalous subdiffusion equation, Numerical Methods for Partial Differential Equations, 32(1), 213–242, (2016).