[1] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, Physics-informed machine learning, 3, 422–440, (2021).
[2] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, 378, 686–707, (2019).
[3] H. D. Mazraeh and K. Parand, Gepinn: An innovative hybrid method for a symbolic solution to the lane-emden type equation based on grammatical evolution and physics-informed neural networks, 48, 100846, (2024).
[4] H. D. Mazraeh, K. Parand, M. Hosseinzadeh, J. Lansky, and V. Nulíek, An improved water strider algorithm for solving the inverse burgers huxley equation, Scientific Reports, (2024).
[5] H. Dana Mazraeh, K. Parand, H. Farahani, and S. Kheradpisheh, An improved imperialist competitive algorithm for solving an inverse form of the huxley equation, Iranian Journal of Numerical Analysis and Optimization, 14(Issue 3), 681–707, (2024).
[6] R. Pourgholi, H. Dana, and S. H. Tabasi, Solving an inverse heat conduction problem using genetic algorithm: Sequential and multi-core parallelization approach, Applied Mathematical Modelling, 38(7), 1948–1958, (2014).
[7] A. N. Firoozsalari, H. D. Mazraeh, A. A. Aghaei, and K. Parand, deepfdenet: A novel neural network architecture for solving fractional differential equations, (2023).
[8] S. Kazem, J. Rad, and K. Parand, Radial basis functions methods for solving fokker-planck equation, 36, 181–189, (2012).
[9] M. Dehghan and M. Tatari, The use of hes variational iteration method for solving a fokker-planck equation, 74, 310–316, (2006).
[10] M. Tatari, M. Dehghan, and M. Razzaghi, Application of the adomian decomposition method for solving the fokker-planck equation, 45, 639–650, (2007).
[11] M. Jafari and A. Aminataei, Application of homotopy perturbation method in the solution of fokker-planck equation, Physica Scripta, 80(5), 055001, (2009).
[12] H. Dana Mazraeh and K. Parand, An innovative combination of deep q-networks and context-free grammars for symbolic solutions to differential equations, 142, 109733, (2025).
[13] H. D. Mazraeh and K. Parand, Approximate symbolic solutions to differential equations using a novel combination of monte carlo tree search and physics-informed neural networks approach, Engineering with Computers, (2025).
[14] H. Dana Mazraeh and K. Parand, A three-stage framework combining neural networks and monte carlo tree search for approximating analytical solutions to the thomas-fermi equation, 87, 102582, (2025).
[15] M. Mohammadi, Y. Ghaderi, H. Dana Mazraeh, and K. Parand, A new rational legendre neural network for solving the blasius equation, Computational Mathematics and Computer Modeling with Applications (CMCMA), 4(1), 1–9, (2025).
[16] H. D. Mazraeh, M. Kalantari, S. H. Tabasi, A. A. Aghaei, Z. Kalantari, and F. Fahimi, Solving fredholm integral equations of the second kind using an improved cuckoo optimization algorithm, Analytical and Numerical Solutions for Nonlinear Equations, 7(1), 33–52, (2022).
[17] H. D. Mazraeh, R. Pourgholi, and T. houlari, Combining genetic algorithm and sinc-galerkin method for solving an inverse diffusion problem, TWMS Journal of Applied and Engineering Mathematics, 7(1), 3350, (2017).
[18] P. Ahadian and K. Parand, Support vector regression for the temperature-stimulated drug release, 165, 112871, (2022).
[19] A. Pakniyat, K. Parand, and M. Jani, Least squares support vector regression for differential equations on unbounded domains, 151, 111232, (2021).
[20] K. Parand, G. S. Ghaemi Javid, and M. Jani, A machine learning approach for solving inverse stefan problem, International Journal of Nonlinear Analysis and Applications, 13(2), 2233–2246, (2022).
[21] K. Parand, M. Razzaghi, R. Sahleh, and M. Jani, Least squares support vector regression for solving volterra integral equations, 38, 789796, (2022).
[22] Y. Li and H. Wang, Chebyshev spectral methods for solving fokker-planck equations, 154, 362–379, (2020).
[23] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, arXiv preprint arXiv:1711.05101, (2017).