[1] F. Black, M. Scholes, The pricing of option and corporate liabilities, J. Polit. Econ, 81, 637–654, (1973).
[2] X. Chen, American option pricing formula for uncertain financial market, Int J Op Res, 8(2), 32–37, (2011).
[3] X. Chen, D. Ralescu, Liu process and uncertain calculus, J Uncertain Anal Appl, 1(3), (2013).
[4] X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim Decis Mak, 9(1), 69–81, (2010).
[5] X. Chen, Y. Liu, D. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optim Decis Mak, 12(1), 111–123, (2013).
[6] R. Cont, P. Tankov, Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series, CRC Press: Boca Raton, FL, USA, 2004.
[7] P. Eloe, R.H. Liu, J.Y. Sun, Double barrier option under regime-switching exponential mean-reverting process, Int. J. Comput. Math, 86(6), 964–981, (2009).
[8] X. Ji, J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Comput, 19(11), 3323–3329, (2015).
[9] L. Jia, W. Chen, Knock-in options of an uncertain stock model with floating interest rate, Chaos, Solitons and Fractals 141, 110324, (2020).
[10] D. Jun, H. Ku, Analytic solution for American barrier options with two barriers, J. Math. Anal. Appl, 422(1), 408–423, (2015).
[11] D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Econometrica, 47(2), 263–292, (1979).
[12] B. Liu, Uncertainty Theory, seconded, Springer-Verlag, Berlin (2007).
[13] B. Liu, Fuzzy process, hybrid process and uncertain process, J Uncertain Syst, 2(1), 3–16, (2008).
[14] B. Liu, Some research problems in uncertainty theory, J Uncertain Syst, 3(1), 3–10, (2009).
[15] B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Springer, Berlin, 2010.
[16] Y. Liu, An analytic method for solving uncertain differential equation, J Uncrtain Syst, 6(4), 244–249, (2012).
[17] B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl, 1, (2013).
[18] C.F. LO, C.H. Hui, Lie-algebraic approach for pricing moving barrier options with time-dependent parameters, J. Math. Anal. Appl, 323(2), 1455–1464, (2006).
[19] R.C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci, 4, 141–183, (1973).
[20] K. Nouri, B. Abbasi, F. Omidi, L. Torkzadeh, Digital barrier options pricing: an improved Monte Carlo algorithm, J. Math Sci, 10, 65–70, (2016).
[21] K. Nouri, B. Abbasi, Implementation of the modified Monte Carlo simulation for evaluate the barrier option prices. Journal of Taibah University for Science, 11, 233–240, (2017).
[22] J. Peng, K. Yao, A new option pricing model for stocks in uncertainty markets, Int J Op Res, 8(2), 18–26, (2011).
[23] D.R. Rich, The mathematical foundations of barrier option-pricing theory, Adv Futur Opt Res, 7, 267–312, (1994).
[24] G. Rong, L. Kaixiang, L. Zhiguo, L. Liying, American barrier option Pricing formulas for currency model in uncertain environment, J Syst Sci Complex, 35, 283–312, (2022).
[25] X. Yang, Z. Zhang, X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos, Solitons and Fractals, 123, 79–86, (2019).
[26] K. Yao, A type of nonlinear uncertain differential equations with analytic solution, J Uncertain Anal Appl, 1(8), (2013).
[27] K. Yao, X. Chen, A numerical method for solving uncertain differential equations, J Intell Fuzzy Syst, 25, 825–832, (2013).
[28] K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim Decis Mak, 14, 399–424, (2015).
[29] X. Yu, A stock model with jumps for uncertain markets, Int J Uncert Fuzz Knowl Syst, 20(3), 421–432, (2012).