Some Remarks on ϕ-Graded Semi-n-Absorbing Submodules

Document Type : Original Research Article

Authors

1 Department of Mathematics, Roudehen Branch, Islamic Azad University, Roudehen, Iran.

2 Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences Semnan University, Semnan, Iran.

Abstract

Let $R$ be a $G$-graded commutative ring with identity and $M$ be a unitary $G$-graded $R$-module. Let $S(M)$ be the set of all graded submodules of $M$ and $\phi:S(M)\rightarrow S(M)\cup \lbrace\emptyset\rbrace$ be a function. A proper graded submodule $N$ of $M$ is called $\phi$-graded semi-$n$-absorbing submodule if whenever $r \in h(R)$ and $m\in h(M)$ with $r^{n}m\in N\backslash\phi(N)$, then $r^{n}\in (N:M)$ or $r^{n-1}m\in N$ ($n\geq2$). In this work, firstly, we state with deeper results on the structure of generalizations of prime submodules as $\phi $-graded prime submodules. Moreover$\phi$-graded semi-$n$-absorbing submodules are studied and some results are obtained.

Keywords


1. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646–1672 (2011).
2. D. F. Anderson and A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra, (in press).
3. D. D. Anderson and E. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36, 686–696 (2008).
4. S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33(1), 3–7 (2006).
5. S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Inter. Mathematical Forum, 1(38), 1871–1880 (2006).
6. A. Barnard, Multiplication modules, J. Algebra, 71, 174–178 (1981).
7. M. Bataineh and Ala, Khazaa,leh, Graded prime submodules over multiplication modules, Inter. J. of pure and applied math., 76(2), 241–250 (2012).
8. A. Y. Darani and F. Soheilnia, On n-absorbing submdules, Math. Commun., 17, 547–557 (2012).
9. M. Ebrahimpour and F. Mirzaee, On ϕ-semiprime submodules, J. Korean Math. Soc., 54(4), 1099–1108 (2017).
10. M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iranian Math.Soc., 39(5), 919–939 (2013).
11. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16, 766–779 (1988).
12. C. P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33, 61–69 (1984).
13. R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20, 1803–1817 (1992).
14. C. Nastasescu and F. Van Oystaeyen, Graded rings theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
15. H. A.Tvallaee and M. Zolfaghari, Graded weakly semiprime submodules of graded multiplication modules, Lobachevskii J. Math., 34(1), 61–67 (2013).
16. F. Van Oystaeyen and J. P. Van Deuren, Arithmetically graded rings, Lecture Notes in Math., Ring Theory (Antwerp 1980), Proceedings 825, 279–284 (1980).
17. N. Zamani, ϕ-prime submodules, Glasgow Math. J., 52(2), 253–259 (2010).
Volume 8, Issue 2
December 2023
Pages 139-151
  • Receive Date: 10 June 2024
  • Revise Date: 09 December 2024
  • Accept Date: 15 January 2025
  • Publish Date: 01 December 2024