[1] H. Alemohammad, B. Najafzadeh, Z. Asadzadeh, A. Baghbanzadeh, F. Ghorbaninezhad, A. Najafzadeh, H. Safarpour, R. Bernardini, O. Brunetti, M. Sonnessa, et al., The importance of immune checkpoints in immune monitoring: a future paradigm shift in the treatment of cancer, Biomedicine & Pharmacotherapy, 146, 112516, (2022).
[2] A. Babaei, H. Jafari, M. Ahmadi, A fractional order HIV/AIDS model based on the effect of screening of unaware infectives, Mathematical Methods in the Applied Sciences, 42(7), 2334–2343, (2019).
[3] L. Bergantini, M. Spalletti, M. d’Alessandro, M. Genovese, E. Masotto, P. Cameli, A. Prasse, E. Bargagli, Predictive role of natural killer cells in bronchoalveolar lavage fluid of patients with sarcoidosis, Pulmonology, 31(1), 2416867, (2024).
[4] R. Boroghani, and K. Nouri, Solving the Fractional HIV Model using Bell Polynomials and the Tau Method, Analytical and Numerical Solutions for Nonlinear Equations, 9(1), 65-73 (2025).
[5] K. Böttger, H. Hatzikirou, A. Voss-Böhme, E. A. Cavalcanti-Adam, M. A. Herrero, A. Deutsch, An emerging Allee effect is critical for tumor initiation and persistence, PLOS Computational Biology, 11(9), e1004366, (2015).
[6] J. A. Bridge, J. C. Lee, A. Daud, J. W. Wells, J. A. Bluestone, Cytokines, chemokines, and other biomarkers of response for checkpoint inhibitor therapy in skin cancer, Frontiers in Medicine, 5, 351, (2018).
[7] N. Chitnis, J. M. Cushing, J. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal on Applied Mathematics, 67(1), 24–45, (2006).
[8] N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology, 70, 1272–1296, (2008).
[9] H. Cui, M. Hamad, E. Elkord, TIGIT in cancer: from mechanism of action to promising immunotherapeutic strategies, Cell Death & Disease, 16(1), 664, (2025).
[10] M. d’Alessandro, E. Conticini, L. Bergantini, F. Mezzasalma, P. Cameli, S. Baglioni, M. Armati, M. Abbritti, E. Bargagli, PD-1, CTLA-4 and TIGIT expression on T and NK cells in granulomatous diseases: sarcoidosis and ANCA-associated vasculitis, International Journal of Molecular Sciences, 24(1), 256, (2022).
[11] L. G. de Pillis, W. Gu, A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, Journal of Theoretical Biology, 238(4), 841–862, (2006).
[12] L. G. de Pillis, A. E. Radunskaya, Modeling tumorimmune dynamics, Mathematical Models of Tumor-Immune System Dynamics, Springer New York, 59–108, (2014).
[13] R. Eftimie, J. L. Bramson, D. J. Earn, Interactions between the immune system and cancer: a brief review of non-spatial mathematical models, Bulletin of Mathematical Biology, 73(2), 2–32, (2011).
[14] H. A. Elkaranshawy, A. M. Makhlouf, Parameter estimation and sensitivity analysis for a model of tumorimmune interaction in the presence of immunotherapy and chemotherapy, Journal of the Egyptian Mathematical Society, 30(1), 8, (2022).
[15] S. Foadian, A.S. Ghadami, Z. Khalili, and H. Badamchi Zadeh, Applications of the Natural-Adomian Decomposition Method to Estimate the Parameters of HIV Infection Model of CD4+ T-Cells. Analytical and Numerical Solutions for Nonlinear Equations, 6(2), 293-301 (2021).
[16] G. J. Freeman, A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, et al., Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, The Journal of Experimental Medicine, 192(7), 1027–1034, (2000).
[17] S. S. Gaikwad, A. L. Zanje, J. D. Somwanshi, Advancements in transdermal drug delivery: a comprehensive review of physical penetration enhancement techniques, International Journal of Pharmaceutics, 652, 123856, (2024).
[18] A. Gambo, M. Jiya, A. K. Dotia, and K. J. Augustina, Deterministic Model of Corruption Dynamics in Nigeria VIA Homotopy Perturbation Method, Analytical and Numerical Solutions for Nonlinear Equations, 8(1), 35-52(2024).
[19] Z. Ge, M. P. Peppelenbosch, D. Sprengers, J. Kwekkeboom, TIGIT: the next step toward successful combination immune checkpoint therapy in cancer, Frontiers in Immunology, 12, 699895, (2021).
[20] R. Gul, C. Schütte, S. Bernhard, Mathematical modeling and sensitivity analysis of arterial anastomosis in the arm, Applied Mathematical Modelling, 40(17-18), 7724–7738, (2016).
[21] Y. Ma, G. V. Shurin, Z. Peiyuan, M. R. Shurin, Dendritic cells in the cancer microenvironment, Journal of Cancer, 4, 36–44, (2013).
[22] K. E. Johnson, G. Howard, W. Mo, M. K. Strasser, E. A. Lima, S. Huang, A. Brock, Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect, PLOS Biology, 17(8), e3000399, (2019).
[23] X. Lai, A. Friedman, Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model, PLOS One, 12(5), e0178479, (2017).
[24] B. R. Lauwerys, N. Garot, J.-C. Renauld, F. A. Houssiau, Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15 or the combination of IL-12 and IL-18, The Journal of Immunology, 165(4), 1847–1853, (2000).
[25] M. Li, P. Xia, Y. Du, S. Liu, G. Huang, J. Chen, H. Zhang, N. Hou, X. Cheng, L. Zhou, P. Li, X. Yang, Z. Fan, T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin-2-mediated negative signaling, Journal of Biological Chemistry, 289(25), 17647–17657, (2014).
[26] A. M. Makhlouf, H. A. Elkaranshawy, Sensitivity analysis for a mathematical model of tumorimmune interactions, UPB Scientific Bulletin, Series A, 83(2), 317–326, (2021).
[27] A. Makhlouf, L. El-Shennawy, H. Elkaranshawy, Mathematical modelling for the role of CD4+ T cells in tumorimmune interactions, Computational and Mathematical Methods in Medicine, 2020, 7187602, (2020).
[28] K. Monica, J. Shreeharsha, P. Falkowski-Gilski, Melanoma skin cancer detection using Mask-RCNN with modified GRU model, Frontiers in Physiology, 14, 1324042, (2024).
[29] R. Padmanabhan, N. Meskin, A.-E. Al Moustafa, Mathematical Models of Cancer and Different Therapies, Springer, Singapore, (2021).
[30] J. Rivera, A. Digklia, A. S. Christou, J. Anibal, K. A. Vallis, B. J. Wood, E. Stride, A review of ultrasound-mediated checkpoint inhibitor immunotherapy, Ultrasound in Medicine & Biology, 50(1), 1-7, (2024).
[31] A. Rousseau, C. Parisi, F. Barlesi, Anti-TIGIT therapies for solid tumors: a systematic review, ESMO Open, 8(2), 101184, (2023).
[32] S. Rui, X. Kong, J. Liu, L. Wang, X. Wang, X. Zou, X. Zheng, F. Ye, H. Xu, Z. Li, et al., The landscape of TIGIT target and clinical application in diseases, MedCommOncology, 1(2), e18, (2022).
[33] S. S. Salim, J. Malinzi, E. Mureithi, N. Shaban, Mathematical modelling of chemovirotherapy cancer treatment, International Journal of Modelling and Simulation, 45(1), 364–385, (2025).
[34] N. Siewe, A. Friedman, Optimal timing of steroid initiation in response to CTLA-4 antibody in metastatic cancer: a mathematical model, PLOS One, 17(11), e0277248, (2022).
[35] T. Tang, W. Wang, L. Gan, J. Bai, D. Tan, Y. Jiang, P. Zheng, W. Zhang, Y. He, Q. Zuo, et al., TIGIT expression in extrahepatic cholangiocarcinoma and its impact on CD8+ T-cell exhaustion: implications for immunotherapy, Cell Death & Disease, 16(1), 90, (2025).
[36] J. M. Tran Janco, P. Lamichhane, L. Karyampudi, K. L. Knutson, Tumor-infiltrating dendritic cells in cancer pathogenesis, The Journal of Immunology 194 (7), 2985–2991, (2015).
[37] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180(1-2), 29–48, (2002).
[38] T. Vongsavath, R. Rahmani, K. M. Tun, V. Manne, The use of fecal microbiota transplant in overcoming and modulating resistance to anti-PD-1 therapy in patients with skin cancer, Cancers, 16(3), 499, (2024).
[39] T. Wang, X. Wu, C. Guo, K. Zhang, J. Xu, Z. Li, S. Jiang, Development of inhibitors of the programmed cell death-1/programmed cell death-ligand 1 signaling pathway, Journal of Medicinal Chemistry, 62(4), 1715–1730, (2018).
[40] S. Wang, J. Lei, X. Zou, S. Jin, Integrating multiscale mathematical modeling and multidimensional data reveals the effects of epigenetic instability on acquired drug resistance in cancer, PLOS Computational Biology, 21(2), e1012815, (2025).
[41] P. Zhang, X. Liu, Z. Gu, Z. Jiang, S. Zhao, Y. Song, J. Yu, Targeting TIGIT for cancer immunotherapy: recent advances and future directions, Biomarker Research, 12(1), 7, (2024).