[1] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D, 34, 373, (1986).
[2] M. Srednicki, Entropy and area, Phys. Rev. Lett., 71, 666, (1993).
[3] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys., 82, 277–306, (2010).
[4] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys., 81, 865–942, (2009).
[5] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B, 424, 443–467, (1994).
[6] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech., P06002, (2004).
[7] M. M. Wolf, Violation of the entropic area law for fermions, Phys. Rev. Lett., 96, 010404, (2006).
[8] D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett., 96, 100503, (2006).
[9] B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications for topological order, J. Stat. Mech., P09005, (2013).
[10] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96, 181602, (2006).
[11] V. E. Hubeny, M. Rangamani, and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP, 07, 062, (2007).
[12] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys., 57, 143–224, (2008).
[13] R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys., 349, 117–158, (2014).
[14] J.L. Cardya, Entanglement entropy in extended quantum systems, Eur. Phys. J. B, 64, 321–326, (2008).