[1] S. Ali, S. Mathew, J. N. Mordeson, and H. Rashmanlou, Vertex connectivity of fuzzy graphs with applications to human trafficking, New Mathematics and Natural Computation, 14(3), 457–485, (2018).
[2] S. Ali, S. Mathew, and J. N. Mordeson, Hamiltonian fuzzy graphs with application to human trafficking, Information Sciences, 550, 268–284, (2021).
[3] S. Ali, S. Mathew, and J. N. Mordeson, Containers and spanning containers in fuzzy graphs with application to human trafficking, New Mathematics and Natural Computation, 20(1), 103–128, (2024).
[4] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, SimGNN: A neural network approach to fast graph similarity computation, in Proceedings of WSDM, 384–392, (2019).
[5] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang, Learning-based efficient graph similarity computation via multi-scale convolutional set matching, in Proceedings of AAAI, 34(4), 3219–3226, (2020).
[6] H. Bunke and G. Allermann, Inexact graph matching for structural pattern recognition, Pattern Recognition Letters, 1(4), 245–253, (1983).
[7] H. Bunke and K. Shearer, A graph distance metric based on the maximal common subgraph, Pattern Recognition Letters, 19(3–4), 255–259, (1998).
[8] X. Gao, B. Xiao, D. Tao, and X. Li, A survey of graph edit distance, Pattern Analysis and Applications, 13(1), 113–129, (2010).
[9] S. Kosari, Z. Shao, Y. Rao, X. Liu, R. Cai, and H. Rashmanlou, Some types of domination in vague graphs with application in medicine, Journal of Multiple-Valued Logic & Soft Computing, 41, (2023).
[10] S. Kosari, X. Qiang, J. Kacprzyk, Q. T. Ain, and H. Rashmanlou, A study on topological indices in fuzzy graphs with application in decision making problems, Journal of Multiple-Valued Logic & Soft Computing, 42, (2024).
[11] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907 (2016).
[12] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, Graph matching networks for learning the similarity of graph structured objects, in Proceedings of ICML, 3835–3845, (2019).
[13] X. Ling, L. Wu, S. Wang, T. Ma, F. Xu, A. X. Liu, C. Wu, and S. Ji, Multilevel graph matching networks for deep graph similarity learning, IEEE Transactions on Neural Networks and Learning Systems, 34(2), 799–813, (2021).
[14] S. Foadian, R. Pourgholi, S. H. Hashem Tabasi, and J. Damirchi, The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets, International Journal of Computer Mathematics, 96(1), 105–125, (2019).
[15] H. Rashmanlou, S. Samanta, M. Pal, and R. A. Borzooei, A study on vague graphs, SpringerPlus, 5(1), 1234, (2016).
[16] H. Rashmanlou, M. Pal, R. A. Borzooei, F. Mofidnakhaei, and B. Sarkar, Product of interval-valued fuzzy graphs and degree, Journal of Intelligent & Fuzzy Systems, 35(6), 6443–6451, (2018).
[17] A. Rosenfeld, Fuzzy graphs, in L. A. Zadeh, K. S. Fu, and M. Shimura (Eds.), Fuzzy Sets and Their Applications, Academic Press, 77–95, (1975).
[18] M. Shoaib, S. Kosari, H. Rashmanlou, M. A. Malik, Y. Rongsheng, and others, Notion of complex Pythagorean fuzzy graph with properties and application, Journal of Multiple-Valued Logic & Soft Computing, 34, (2020).
[19] W. Tan, X. Gao, Y. Li, G. Wen, P. Cao, J. Yang, W. Li, and O. R. Zaiane, Exploring attention mechanism for graph similarity learning, Knowledge-Based Systems, 276, 110739, (2023).
[20] R. Wang, T. Zhang, T. Yu, J. Yan, and X. Yang, Combinatorial learning of graph edit distance via dynamic embedding, in Proceedings of IEEE/CVF CVPR, 5241–5250, (2021).