[1] C. D. Roberts and A. G. Williams, Dyson–Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33, 477–575, (1994).
[2] R. Alkofer and L. von Smekal, The infrared behaviour of QCD Green’s functions: Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states, Phys. Rept. 353, 281–465, (2001).
[3] Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev. 122, 345 (1961).
[4] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175 (1957).
[5] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, 1995.
[6] J. C. Collins, Renormalization, Cambridge University Press, 1984.
[7] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980.
[8] R. J. Rivers, Path Integral Methods in Quantum Field Theory, Cambridge University Press, 1987.
[9] C. S. Fischer, Infrared properties of QCD from Dyson–Schwinger equations, J. Phys. G 32, R253 (2006).
[10] P. Maris and C. D. Roberts, Dyson–Schwinger equations: A tool for hadron physics, Int. J. Mod. Phys. E 12, 297–365, (2003).