[1] M. Arefi, A. H. Khammar, Nonlinear prediction of fuzzy regression model based on quantile loss function, Soft Computing, 1–11, (2023).
[2] M. Arefi, Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters, Soft Computing, 24(1), 311–320, (2020).
[3] Z. Behdani, M. Darehmiraki, Theil-Sen Estimators for fuzzy regression model, Iranian Journal of Fuzzy Systems, 21(3), 177–192, (2024).
[4] Z. Behdani, M. Darehmiraki, Enhancing Kernel Ridge Regression Models with Compact Support Wendland Functions, Analytical and Numerical Solutions for Nonlinear Equations, 9(1), 34–47, (2025).
[5] Z. Behdani, M. Darehmiraki, Neutrosophic fuzzy regression: A linear programming approach, Iranian Journal of Operations Research, 15(1), 1–11, (2024).
[6] Q. Cai, Z. Hao, X. Yang, Gaussian kernel-based fuzzy inference systems for high dimensional regression, Neurocomputing, 77(1), 197–204, (2012).
[7] W. Chung, A Fuzzy Convex Nonparametric Least Squares Method with Different Shape Constraints, International Journal of Fuzzy Systems, 1–15, (2023).
[8] G. E. del Pino, H. Galaz, Statistical applications of the inverse gram matrix: A revisitation, Brazilian Journal of Probability and Statistics, 177–196, (1995).
[9] P. Diamond, R. Korner, Extended fuzzy linear models and least squares estimates, Computers & Mathematics with Applications, 33(9), 15–32, (1997).
[10] P. Drineas, M. W. Mahoney, Approximating a gram matrix for improved kernel-based learning, In: International Conference on Computational Learning Theory, 323–337, (2005).
[11] A. I. Iacob, C. C. Popescu, Regression using partially linearized gaussian fuzzy data, In: Informatics Engineering and Information Science: International Conference, ICIEIS 2011, Kuala Lumpur, Malaysia, November 14-16, 2011. Proceedings, Part II, 584–595, (2011).
[12] E. J. Kansa, Radial basis functions: achievements and challenges, WIT Transactions on Modelling and Simulation, 61, 3–22, (2015).
[13] A. H. Khammar, M. Arefi, M. G. Akbari, A general approach to fuzzy regression models based on different loss functions, Soft Computing, 25(2), 835–849, (2021).
[14] J. M. Leski, Fuzzy c-ordered-means clustering, Fuzzy Sets and Systems, 286, 114–133, (2016).
[15] Y. Li, X. He, X. Liu, Fuzzy multiple linear least squares regression analysis, Fuzzy Sets and Systems, 459, 118–143, (2023).
[16] D. A. Savic, W. Pedrycz, Evaluation of fuzzy linear regression models, Fuzzy sets and systems, 39(1), 51–63, (1991).
[17] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in computational Mathematics, 4(1), 389–396, (1995).
[18] H. Wendland, Scattered data approximation, Cambridge, UK: Cambridge University Press, (2005).
[19] K. Wiktorowicz, T. Krzeszowski, Approximation of two-variable functions using high-order Takagi-Sugeno fuzzy systems, sparse regressions, and metaheuristic optimization, Soft Computing, 24(20), 15113–15127, (2020).
[20] Z. Wu, Compactly supported positive definite radial functions, Advances in Computational Mathematics, 4(1), 283–292, (1995).
[21] M. S. Yang, C. H. Ko, On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy sets and systems, 84(1), 49–60, (1996).
[22] L. A. Zadeh, Toward extended fuzzy logic first step, Fuzzy sets and systems, 160(21), 3175–3181, (2009).