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Abstract In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained
Optimization J. Optim. Theory Appl. 141 (2009) 249 - 264), an efficient hy-
brid conjugate gradient algorithm, the CCOMB algorithm is proposed for
solving unconstrained optimization problems. However, the proof of Theorem
2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the
descent property for the search direction of the CCOMB algorithm. It is also
remarkable that the proof of the Theorem 2.2 should be revised. Following
the notations in [1], the main goal of this note is to provide some necessary
corrections to rectify the mentioned issues.
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1 Introduction

The conjugate gradient method represents a major contribution to the panoply
of methods for solving large-scale unconstrained optimization problems. They
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are characterized by low memory requirements and have strong local and global
convergence properties [4,3]. The popularity of these methods is remarkable
partially due to their simplicity both in their algebraic expression and in their
implementation in computer codes, and partially due to their efficiency in
solving large-scale unconstrained optimization problems

minimize f(x), Subject to x ∈ Rn. (1)

Recently, by a convex combination of PRP conjugate gradient method sug-
gested by Polak and Ribiére [5] and DY conjugate gradient method suggested
by Dai and Yuan [2], Andrei [1] proposed the hybrid CG algorithm CCOMB
which is numerically efficient. CCOMB is an iterative method in the following
form,

x0 ∈ Rn

xk+1 = xk + sk, sk = αkdk k = 0, 1, 2, ...,
(2)

where αk > 0 is obtained by line search and the directions dk are generated as

dk+1 = −gk+1 + βN
k sk, d0 = −g0. (3)

where gk = ∇f(xk) and the scalar parameter βN
k is defined by

βN
k = (1− θk)β

PRP
k + θkβ

DY
k = (1− θk)

yTk gk+1

gTk gk
+ θk

gTk+1gk+1

yTk sk
, (4)

where yk = gk+1 − gk and θk is a scalar parameter satisfying 0 ≤ θk ≤ 1,
which will be determined in a specific way to be described later. Observe that
if, θk = 0, then, βN

k = βPRP
k , and if, θk = 1, then, βN

k = βDY
k . On the other

hand, if 0 < θk < 1, then βN
k is a convex combination of βPRP

k and βDY
k .

In the CCOMB algorithm, the parameter θk is selected in such a way that
at every iteration the conjugacy condition yTk dk+1 = 0 is satisfied indepen-
dently of the line search. Obviously,

dk+1 = −gk+1 + (1− θk)
yTk gk+1

gTk gk
sk + θk

gTk+1gk+1

yTk sk
sk. (5)

Hence, after some algebra effort, one get

θk =
(yTk gk+1)(y

T
k sk)− (yTk gk+1)(g

T
k gk)

(yTk gk+1)(yTk sk)− (gTk+1gk+1)(gTk gk)
(6)

In the CCOMB algorithm, the steplength αk is selected to satisfy the so-called
Wolfe line search conditions [6,7], requiring that

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk,

gTk+1dk ≥ σgTk dk,
(7)

where 0 < δ < σ < 1.
Although the CCOMB algorithm is more robust than PRP and DY con-

jugate gradient algorithms, the proof of Theorem 2.1, the descent property
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theorem of the CCOMB, and a part of the proof of Theorem 2.2, the sufficient
descent property theorem of the CCOMB, are incorrect. Here, we first state
the wrongs occurred in the proofs of Theorems 2.1 and 2.2 in [1] and then,
to complete the proof of Theorem 2.1 in [1], we will show that the search
directions generated by the CCOMB are descent.

2 Two wrongs in analysis of the CCOMB algorithm

In the proof of Theorem 2.1 in [1], according to 0 < θk < 1 and Eq. (5) (Eq.
(8) in [1]), authors of [1] have claimed that the search direction of the CCOMB
is decreasing, that is,

gTk dk ≤ 0, ∀k ≥ 0.

Hence, they deduce that

gTk+1dk+1 = −∥gk+1∥2 + (1− θk)
yTk gk+1

gTk gk
gTk+1sk + θk

gTk+1gk+1

yTk sk
gTk+1sk (8a)

≤ −∥gk+1∥2 +
yTk gk+1

gTk gk
gTk+1sk +

gTk+1gk+1

yTk sk
gTk+1sk, (8b)

but, since the terms of yTk gk+1 and gTk+1sk can be positive or negative, so, the
signs of the second and the third parts of the right hand side of (8a) are not
clear at all. Hence, the inequality of (8b) is an incorrect conclusion. Therefore,
another strategy should be considered to prove the descent property for the
search directions generated by the CCOMB, which is the subject of the next
section.

On the other hand, in the proof of Theorem 2.2 in [1], the sufficient descent
property of the search directions of the CCOMB, that is,

gTk dk ≤ −c∥gk∥2, ∀k ≥ 0,

with some positive constant c, has been proved. In the proof presented [1],
using yTk sk > 0, which is due to the curvature condition (inequality (5) in [1]),
and

gTk+1sk = yTk sk + gTk sk < yTk sk (9)

the following result has been taken

yTk sk
gTk+1sk

> 1. (10)

Note that the term of gTk+1sk can be positive or negative. Hence, the inequality
(10) is a wrong result and it must be replaced by

gTk+1sk

yTk sk
< 1. (11)
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3 Descent property for the CCOMB algorithm

The mentioned issues occurred in the analyzing of the CCOMB motivated
us to study the descent property for this algorithm. The following theorem
guarantees the descent property of the CCOMB and gives a modified proof to
Theorem 2.1 in [1].

Theorem 1 In the algorithm (2), (5) and (6), assume that αk is determined
by the Wolfe line search (7). If 0 < θk < 1, then the direction dk+1 given by
(5) is a descent direction.

Proof. We consider the following situation.

Case 1: gTk+1sk > 0 and yTk gk+1 > 0;

Case 2: gTk+1sk > 0 and yTk gk+1 < 0;

Case 3: gTk+1sk < 0 and yTk gk+1 > 0;

Case 4: gTk+1sk < 0 and yTk gk+1 < 0.

Case1. In this situation, the proof of [1] is correct.

Case2. Since 0 < θk < 1, from (5) we get

gTk+1dk+1 = −∥gk+1∥2 + (1− θk)
yTk gk+1

gTk gk
gTk+1sk + θk

gTk+1gk+1

yTk sk
gTk+1sk

≤ −∥gk+1∥2 +
gTk+1gk+1

yTk sk
gTk+1sk

= (−1 +
gTk+1sk

yTk sk
)∥gk+1∥2

=
gTk sk
yTk sk

∥gk+1∥2 ≤ 0.

Case3. In this situation, since the second and the third parts of the right
hand side of (8a) are negative, therefore, it follows from (8) that gTk+1dk+1 ≤ 0,
i.e., dk+1 is a descent direction.

Case4. Since 0 < θk < 1, from (5) we get

gTk+1dk+1 = −∥gk+1∥2 + (1− θk)
yTk gk+1

gTk gk
gTk+1sk + θk

gTk+1gk+1

yTk sk
gTk+1sk

≤ −∥gk+1∥2 + θk
gTk+1gk+1

yTk sk
gTk+1sk +

yTk gk+1

gTk gk
gTk+1sk.
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Observe that yk becomes tiny while ∥gk∥ is bounded away from zero. Con-
sequently, the last term in the above inequality becomes negligible. From

0 < θk < 1 and (11), we have (1− θk
gT
k+1sk

yT
k sk

) > 0, that is

gTk+1dk+1 ≤ −(1− θk
gTk+1sk

yTk sk
)∥gk+1∥2 ≤ 0.
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