On Marginal Automorphisms of a Group Fixing the Certain Subgroup

Mohammad Mehdi Nasrabadi *·* **Samane Hajizade***[∗]*

Received: 16 March 2017 / Accepted: 16 July 2017

Abstract Let *W* be a variety of groups defined by a set *W* of laws and *G* be a finite *p*-group in *W*. The automorphism α of a group *G* is said to be a marginal automorphism (with respect to *W*), if for all $x \in G$, $x^{-1}\alpha(x) \in$ $W^*(G)$, where $W^*(G)$ is the marginal subgroup of *G*. Let *M*, *N* be two normal subgroups of *G*. By $Aut^M(G)$, we mean the subgroup of $Aut(G)$ consisting of all automorphisms which centralize G/M . $Aut_N(G)$ is used to show the subgroup of $Aut(G)$ consisting of all automorphisms which centralize *N*. We denote $Aut_N(G) \cap Aut^M(G)$ by $Aut^M_N(G)$. In this paper, we obtain a necessary and sufficient condition that $Aut_{w^*}(G) = Aut_{W^*(G)}^{W^*(G)}$ W^* ^{(*G*})</sub>(*G*).

Keywords *W*-nilpotent group *·* marginal automorphism *·* purely non-abelian group

Mathematics Subject Classification (2010) 20D45 *·* 20E36

Mohammad Mehdi Nasrabadi Department of Mathematics, University of Birjand, Iran. Tel.: +98-56-32202346 Fax: +98-56-32202346 E-mail: mnasrabadi@birjand.ac.ir

*∗*Corresponding author Samane Hajizade Department of Mathematics, University of Birjand, Iran. E-mail: hajizadehmath@gmail.com

*⃝*c 2017 Damghan University. All rights reserved. http://gadm.du.ac.ir/

1 Introduction

2 Introduction and results

Let *G* be a group and F_∞ be the free group on the countable set $\{x_1, x_2, \dots\}$ and *W* be a non-empty subset of F_∞ . Suppose that

$$
W(G) = \langle w(g_1, \dots, g_r) | w = w(x_1, \dots, x_r) \in W \text{ and } g_1, \dots, g_r \in G \rangle
$$

and

$$
W^*(G) = \Big\{ g \in G \mid w(g_1, \cdots, g_{i-1}, g_i g, g_{i+1}, \cdots, g_r) = w(g_1, \cdots, g_r)
$$

for all $w \in W$, for all $g_1, \cdots, g_r \in G$ and for all $1 \leq i \leq r$.

For a group $G, W(G)$ and $W^*(G)$ are called, respectively, the verbal subgroup and the marginal subgroup of G with respect to W (see [8]). The verbal subgroup $W(G)$ is a fully invariant subgroup of G , and the marginal subgroup $W^*(G)$ is a characteristic subgroup of *G*.

We call an automorphism α of G a *marginal automorphism* with respect to *W* if $x^{-1}\alpha(x) \in W^*(G)$ for all $x \in G$.

The set of all marginal automorphisms of *G* forms a normal subgroup *Aut^w[∗]* (*G*) of the automorphism group $Aut(G)$ of *G*. If we take $W = \{[x_1, x_2]\}$ where $[x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2$, then $W(G) = G'$ and $W^*(G) = Z(G)$ where G' and $Z(G)$ are the commutator subgroup and the center of *G*, respectively.

In this case, $Aut_{w^*}(G)$ is denoted by $Aut_c(G)$ and the elements of $Aut_c(G)$ are called *central automorphism* of *G*. There are some well-known results about central automorphisms of G (for example see [1], [6] and [7]). Let M , N be two normal subgroups of *G*. By $Aut^M(G)$, we mean the subgroup of $Aut(G)$ consisting of all automorphisms which centralize G/M . $Aut_N(G)$ is used to show the subgroup of $Aut(G)$ consisting of all automorphisms which centralize *N*. We denote $Aut_N(G) \cap Aut^M(G)$ by $Aut^M_N(G)$.

Let be W a variety of groups defined by set W of laws then a group G is said to be *W*-nilpotent if there exist a series

$$
1 = G_0 \le G_1 \le \dots \le C_k = G \tag{1}
$$

such that $G_i \trianglelefteq G$ and $G_{i+1}/G_i \leq W^*(G/G_i)$, for $0 \leq i \leq n$. The length of the shortest series (1) is the *W*-nilpotent class of *G*.

For a finite *p*-group *G* define $\Omega_1(G) = \langle x \in G \mid x^p = 1 \rangle$.

A non-abelian group *G* is called purely non-abelian if it has no non-trivial abelian direct factor. In this article such that group showed by PN-group. For any group H and abelian group K , $Hom(H, K)$ denote the group of all homomorphisms from *H* to *K*.

Azhdari and Malayeri [4] found necessary and sufficient condition that

 $Aut_N^M(G) = Aut_c(G)$ and several corollaries where M , N are normal subgroups of a finite *p*-group *G*.

Through this article, W is a variety of groups and G is a finite p -group in

W which $W^*(G) \leq Z(G)$ and $G/W(G)$ is abelian also by the assumption $M \leq W^*(G)$ we have :

$$
M = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_s}} \tag{2}
$$

$$
W^*(G) = C_{p^{b_1}} \times C_{p^{b_2}} \times \dots \times C_{p^{b_{s'}}}
$$
(3)

$$
G/W(G) = C_{p^{d_1}} \times C_{p^{d_2}} \times \cdots \times C_{p^{d_r}}
$$
\n
$$
\tag{4}
$$

(5)

where $a_1 \ge a_2 \ge \cdots a_s > 0$, $b_1 \ge b_2 \ge \cdots b_{s'} > 0$ and also $d_1 \ge d_2 \ge$ $\cdots d_r > 0$

Let t be the smallest integer between 1 and *s* such that $a_j = b_j$ for all $t \neq s$ and $t + 1 \leq j \leq s$. By this assumption our main results are the following. **Main theorem:** Let *W* be a variety of group, *G* be finite *p*-group in *W* which is *W*-nilpotent . Let M_1, M_2, N_1 and N_2 be normal subgroups of *G* such that $M_i \leq W^*(G) \cap N_i$ for $i = 1, 2, M_1 \leq M_2$ and $N_1 \leq N_2$. Then $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if one of the following statements holds:

- (i) $M_1 = M_2$ and $N_1 \leq W(G)G^{p^n}N_2$ where $exp(M_1) = p^n$ or
- (ii) $N_1 = N_2$, $s = s'$ and $exp(G/W(G)N_1) \leq p^{a_t}$, where *t* is the smallest integer between 1 and *s* such that $a_j = b_j$.

By using the above notation we have the following corollary.

Corollary. Let *G* be a finite *p*-group which is *W*-nilpotent group. Let *M* and *N* be two normal subgroups of *G* such that $M \leq W^*(G) \leq W(G)$. Then

(i) $Aut_N^M(G) = Aut_{W^*(G)}^{W^*(G)}$ $W^W(G)(G)$ if and only if one of the following statements holds:

 $M = W^*(G)$ and $N \leq W(G)G^{p^n}W^*(G)$ where $exp(W^*(G)) \leq p^{a_n}$ or $N = W^*(G)$, $s = s'$ and $exp(G/W(G)W^*(G)) \leq p^{a_t}$;

(ii) $Aut_N^M(G) = Aut_{w^*}(G)$ if and only if one of the following statements holds: $M = W^*(G)$ and $N \leq W(G)G^{p^n}$ where $exp(W^*(G)) = p^{a_n}$ or $N \leq W(G)$, $s = s'$ and $exp(G/W(G)) \leq p^{a_t}.$

3 Preliminary results

Adeney and Yen [1, Theorem 1] prove that if *G* is a purely non-abelian, then there exist a bijection between $Aut_c(G)$ and $Hom(G/G', Z(G))$. Also Jamali and Mousavi in [6] prove that if *G* is a finite group such that $Z(G) \leq G'$ then $Aut_c(G) \cong Hom(G/G', Z(G)).$

Similarly Attar in [3] prove the following theorems about marginal automorphisms of a group *G*:

Theorem 1 [3] Let G be a group and $\emptyset \neq W \subseteq F_{\infty}$ be the set of laws, Then $Aut_{w^*}(G)$ *acts trivially on* $W(G)$ *.*

Theorem 2 [3] Let G be a purely non-abelian finite group and $\emptyset \neq W \subseteq F_{\infty}$ *be the set of laws such that* $W^*(G) \leq Z(G)$ *, then*

 $|Aut_{w^*}(G)| = |Hom(G/W(G), W^*(G))|$.

Theorem 3 [3] Let G be a group and $\emptyset \neq W \subseteq F_{\infty}$ be the set of laws such *that* $W^*(G) \leq Z(G) \cap W(G)$, Then $Aut_{w^*}(G) \cong Hom(G/W(G), W^*(G))$

Proposition 1 *[3]* Let *G* be a purely non-abelian finite group and $\emptyset \neq W$ *F[∞] be the set of laws such that W[∗]* (*G*) *is abelian, Then*

(1) For each $\alpha \in Hom(G, W^*(G))$ and $t \in W(G)$ we have $\alpha(t) = 1$; (2) $Hom(G/W(G), W^*(G)) \cong Hom(G, W^*(G)).$

By this proposition we have $Aut_{w^*}(G) \cong Aut_{W^*(G)}^{W(G)}(G)$ We recall that through this article *W* is a variety of groups and *G* is a finite *p*-group in *W* which $W^*(G) \leq Z(G)$ and $G/W(G)$ is abelian with abelian direct factor (4).

Theorem 4 *[3] Let W is a variety of groups and G is W-nilpotent group and* $1 \neq N \lhd G$, then $N \cap W^*(G) \neq 1$.

Lemma 1 *[3] Let G be a finite PN-group and M , N be two normal subgroups of G* such that $M \leq Z(G)$ *(in particular* $M \leq W^*(G)$ *since* $W^*(G) \leq Z(G)$ *)*, *then*

$$
|Aut_N^M(G)| = |Hom(G/N, M)|.
$$

Lemma 2 [3] Let G be a group and M, N be two normal subgroups of G $such that M \leq Z(G) \cap N$ *, then*

$$
Aut_N^M(G) \cong Hom(G/N, M)
$$

and $Aut_N^M(G)$ *is abelian.*

Lemma 3 [9] Let *A* and *B* be two finite abelian p-groups such that $A = C_{p^{a_1}} \times$ $C_{p^{a_2}} \times \cdots \times C_{p^{a_s}}$ where $a_1 \ge a_2 \ge \cdots a_s > 0$ and $B = C_{p^{b_1}} \times C_{p^{b_2}} \times \cdots \times C_{p^{b_s}}$ where $b_1 \geq b_2 \geq \cdots b_s > 0$. Let $b_j \geq a_j$ for all j, $1 \leq j \leq s$ and $b_j > a_j$ for *some such j. Let t be the smallest integer between* 1 *and s such that* $a_j = b_j$ *for all j such that* $t + 1 \leq j \leq s$ *. Then for any finite abelian p-group C*, $|Hom(A, C)| < |Hom(B, C)|$ *if and only if the exponent of C is at least* p^{a_t+1} .

4 Proof of the main results

Proof of The Main Theorem: We proceed with a series of steps. Let G be a finite *p*-group which is *W*-nilpotent.

Step 1. Let $M \leq W^*(G)$ and $exp(M) = p^n$ and N be a normal subgroup of *G*. Then for all $f \in Hom(G/N, M)$ we have $ker f = W(G)G^{p^n}N/N$.

Proof. Clearly $W(G)G^{p^n}N/N \leq \ker f$ for all $f \in Hom(G/N, M)$. To prove the converse inclusion, let $x \notin W(G)G^{p^n}N$. Since $M \leq W^*(G)$, then

Hom(*G*/*N,M*) \cong *Hom*(*G*/*W*(*G*)*N,M*). Put $\overline{G} = G/W(G)N$. \overline{G} is a finite abelian *p*-group and so there exist $x_1, x_2, \cdots, x_t \in G$ such that $\overline{G} =$ $\langle \bar{x}_1 \rangle \times \langle \bar{x}_2 \rangle \times \cdots \times \langle \bar{x}_t \rangle$ and $xW(G)N = x_1^{p^{s_1}}$ $\int_1^{p^{s_1}} \cdots x_t^{p^{s_t}} W(G)N$ for suitable $s_i \geq 0$ (See [7 lemma 2.2]) Since $x \neq W(G)G^{p^n}N/W(G)N$, $x_j^{p^{s_j}}$ $j^{p^{sj}} \notin G^{p^n}$ for some $1 \leq j \leq t$ and therefor $s_j < n$. Now choose element $z \in M$ such that $|z| = min\{|\bar{x}_i|, p^n\}$, and define a homomorphism $f_z : \bar{x}_i \mapsto z$ from \bar{G} to *M*. When $M \leq W^*(G)$ and \overline{K} is a direct factor of \overline{G} then any element f of $Hom(\bar{K}, M)$ induces an element \bar{f} of $Hom(\bar{G}, M)$ which is trivial on the complement of \bar{K} of \bar{G} . To simplify the notion, we will identify f with the corresponding homomorphism from \overline{G} to *M*. We have $f_z(\overline{x}) = f_z(\overline{x_j}^{p^{s_j}}) = z_j^{p^s}$ $j^p \neq 1$. Thus $\bar{x} \notin ker f$ for $f \in Hom(G/N, M)$ and consequently the equality holds. **Step 2**. Let N_1 , N_2 be two normal subgroups of *G* such that $N_2 \leq N_1$ and $M \leq W^*(G) \cap N_i$ for $i = 1, 2$. Then $Aut_{N_1}^M = Aut_{N_2}^M$ if and only if $N_1 \leq W(G)G^{p^n}N_2$ where $exp(M) = p^n$.

Proof. Since $N_2 \leq N_1$, $Aut_{N_1}^{\tilde{M}} \leq Aut_{N_2}^{\tilde{M}}$. Suppose that $N_1 \leq W(G)G^{p^n}N_2$, by using Step 1, $\bar{N_1} \leq \ker f$ for all $f \in Hom(G/N_2, M)$. We have $Hom(G/N_2, M) \cong$ $Hom(G/N_1N_2, M) \cong Hom(G/N_1, M)$, since $N_2 \leq N_1$. That is *| Aut*^{*M*}_{N1}</sub>(*G*) *|*=*|* $Aut_{N_2}^M(G)$ | and hence $Aut_{N_1}^M(G) = Aut_{N_2}^M(G)$. Conversely, assume that $Aut_{N_1}^M(G) =$ *Aut*^{*M*}_{*N*2}</sub>(*G*). Then $\alpha(n) = n$ for all $n \in N_1$ and $\alpha \in Aut_{N_2}^M(G)$. By Lemma 2 $\alpha^*(\bar{n}) = 1$ for all $\alpha^* \in Hom(G/N_2, M)$ and $n \in N_1$. Consequently by Step 1, $N_1 \leq W(G)G^{p^n}N_2$, as required.

Step 3. Let *N* be a normal subgroup of *G* and $M_1 < M_2 \leq W^*(G)G^{p^n}N$. Then $Aut_N^{M_1}(G) = Aut_N^{M_2}(G)$ if and only if $s = s'$ and $exp(G/W(G)N) \leq p^{a_t}$ where t is the smallest integer between 1 and *s* such that $a_j = b_j$ for all $t+1 \leq j \leq s$. **Proof.** Since $M_1 \leq M_2$, $Aut_N^{M_1}(G) \leq Aut_N^{M_2}(G)$ by using Lemma 2 $Aut_N^{M_1}(G)$ = $Aut_N^{M_2}(G)$ if and only if $Hom(G/N, M_1) \cong Hom(G/N, M_2)$. first assume that $Aut_N^{M_1}(G) = Aut_N^{M_2}(G)$, then clearly $s = s'$. So by applying Lemma 3 with $A = M_1, B = M_2$ and $C = W(G)N$ we get $exp(G/W(G)N) \le$ p^{a_t} , since if $exp(G/W(G)N) \geq p^{a_t+1}$, then we have $|Hom(G/N, M_1)| <$ $Hom(G/N, M_2)$ | which is a contradiction. Now suppose that $s = s'$ and $exp(G/W(G)N) \leq p^{a_t}$ then *|* $Hom(G/N, M_1)$ *|*=*|* $Hom(G/N, M_2)$ *|* and therefor $Aut_N^{M_1}(G) \leq Aut_N^{M_2}(G)$.

Step 4. First assume that $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$. By Lemma 2

Hom(*G*/*N*₁*, M*₁) ≅ *Hom*(*G*/*N*₂*, M*₂). If $M_1^{\{1,2\}} \leq M_2$ and $N_2 \leq N_1$ then by Lemma D [5] $Hom(G/N_1, M_1) \leq Hom(G/N_2, M_2)$. This contradiction implies $M_1 = M_2$ or $N_1 = N_2$. If $M_1 = M_2$ then by Step 2, $N_1 \leq W(G)G^{p^n}N_2$. Else, since $M_1 \neq M_2$, $N_1 = N_2$ then by Step 3, it follows that $s = s'$ and

 $exp(G/W(G)N) \leq p^{a_t}.$

Conversly, if (i) or (ii) holds it is easy to see that $Hom(G/N_1, M_1) \cong Hom(G/N_2, M_2)$. On the other hand since $M_1 \leq M_2$ and $N_2 \leq N_1$, $Aut_{N_1}^{M_1}(G) \leq Aut_{N_2}^{M_2}(G)$ and consequently $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$, as required. \square

Remark. Note that in the Proof of The Main Theorem, we use the conditions $M_i \leq W^*(G) \cap N_i$ only to prove the equality $|Aut_{N_i}^{M_i}| = |Hom(G/N_i, M)|$. So by Lemma 1 we may substitute this condition by "*G* be a PN-group". And by using the same argument, we can easily prove the following Theorem.

Theorem 5 *Let G be a finite p-group which is PN and W-nilpotent group.* Let M_1 and M_2 be two subgroups which is marginal subgroup and N_1 and N_2 *be two normal subgroups of G such that* $M_1 \leq M_2$ *and* $N_2 \leq N_1$ *. Then* $Aut_{N_1}^{M_1}(G) \leq Aut_{N_2}^{M_2}(G)$ *if and only if one of the following statements holds:*

- *(i)* $M_1 = M_2$ *and* $N_1 \leq W(G)G^{p^n}N_2$ *where* $exp(M_1) \leq p^n$ *, or*
- *(ii)* $N_1 = N_2$, $s = s'$ *and* $exp(G/W(G)N_1) \leq p^{a_t}$ *where t is the smallest integer between* 1 *and s such that* $a_j = b_j$ *for all* $t + 1 \leq j \leq s$ *.*

The Main Theorem has a number of important consequences. As a first application of this we get the following result.

Corollary 1 *Let G be a finite p-group which is W-nilpotent group. Let M and N be two normal subgroups of G such that* $M \leq W^*(G) \leq W(G)$ *. Then*

 (i) $Aut_N^M(G) = Aut_{W^*(G)}^{W^*(G)}$ $W^W(G)(G)$ *if and only if one of the following statements holds:*

 $M = W^*(G)$ and $N \leq W(G)G^{p^n}W^*(G)$ where $exp(W^*(G)) \leq p^{a_n}$ or $N = W^*(G)$, $s = s'$ *and* $exp(G/W(G)W^*(G)) \leq p^{a_t}$;

(ii) $Aut_N^M(G) = Aut_{w^*}(G)$ *if and only if one of the following statements holds:* $M = W^*(G)$ and $N \leq W(G)G^{p^n}$ where $exp(W^*(G)) = p^{a_n}$ or $N \leq W(G)$, $s = s'$ *and* $exp(G/W(G)) \leq p^{a_t}$.

Proof (i) The result follows immediately by applying The Main Theorem with $M_1 = M, N_1 = N$ and $M_2 = N_2 = W^*(G)$. To prove (ii), note that if M contained in the marginal subgroup of *G*, then $Aut_N^M(G) = Aut_{NW(G)}^M(G)$.

Also $M \leq W^*(G) \leq N$ follows that $Aut_{w^*}(G) = Aut_{W^*(G)}^{W^*(G)}$ $W^W(G)(G)$ and since *G* is a PN-group therefor, by applying Theorem 5 with $M_1 = M$, $N_1 = NW(G)$, $M_2 = W^*(G)$ and $N_2 = W(G)$, (ii) holds.

Conversely, if the firs part of (ii) holds then

$$
Hom(G/N, M) \cong Hom(G/N, W^*(G)) \cong Hom(G/W(G)N, W^*(G))
$$

$$
\cong Hom(G/W(G), W^*(G))
$$

Now if the second part of (ii) holds then

 $Hom(G/N, M) \cong Hom(G/NW(G), W^*(G)) \cong Hom(G/N, W^*(G))$

hence $| Hom(G/N, M) | = | Hom(G/W(G), W^*(G)) |$ or equivalently

$$
Aut_N^M(G) = Aut_{w^*}(G) .
$$

This corollary yields some following results.

Corollary 2 *Let G be a finite p-group which is W-nilpotent group. Then* $Aut_{w^*}(G) = Aut_{W^*(G)}^{W^*(G)}$ $W^{*}(G)$ _{*W*^{*∗*}</sup>(*G*) *if and only if* $W^{*}(G) \leq W(G)G^{p^{n}}$ where $exp(W^{*}(G)) =$} *p n.*

Proof It follows from Corollary 1 when $M = N = W^*(G)$.

Corollary 3 Let G be a finite p-group which is W-nilpotent group. Let M_1 , M_2 , N_1 *and* N_2 *be normal subgroups of G such that* $M_i \leq W^*(G) \cap N_i$ *for* $i = 1, 2$ *. Then* $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if one of the following state*ments holds:*

- (i) $M_1 = M_2$ and $N_i \leq W(G)G^{p^{n_j}}N_j$ for $i = 1, 2$ and $i \neq j$;
- (ii) $M_1 \leq M_2$, $s = s_1 = s_2$, $N_1 \leq N_2 \leq W(G)G^{p^{n_1}}N_1$ and $exp(G/W(G)N_2) \leq$ $p^{a^{t_2}}$;
- (iii) $M_2 \leq M_1$, $s = s_1 = s_2$, $N_2 \leq N_1 \leq W(G)G^{p^{n_2}}N_2$ and $exp(G/W(G)N_1) \leq$ $p^{a^{t_1}}$;

$$
(iv) N_1 = N_2, s = s_1 = s_2 \text{ and } exp(G/W(G)N_1) \le p^{a^{t_i}} \text{ for } i = 1, 2
$$

Proof First assume that $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$. Therefore we have $Aut_{N_1}^{M_1}(G) =$ $Aut_{N_1N_2}^{M_1 \cap M_2}(G) = Aut_{N_2}^{M_2}(G)$. Clearly, $M_1 \cap M_2 \leq M_i$ and $N_i \leq N_1N_2$ for $i = 1, 2$ and so we may apply The Main Theorem. Since $Aut_{N_i}^{M_i}(G) =$ $Aut_{N_1N_2}^{M_1 \cap M_2}(G)$ for $i = 1, 2$ one of the following case happens.

- (W) $M_i = M_1 \cap M_2$ and $N_1N_2 \leq W(G)G^{p^{n_i}}N_i$. So $M_i \leq M_j$ and $N_j \leq$ $W(G)G^{p^{n_i}}N_i$ for $i \neq j$. Or,
- (II) $N_i = N_1 N_2$, $s = s_i$ and $exp(G/W(G)N_i) \leq p^{a^{t_i}}$. So $N_j \leq N_i$, $s = s_i$ and $exp(G/W(G)N_i) \leq p^{a^{t_i}}$ for $i \neq j$.

Therefore we have the following four cases:

- (1) If for $i = 1, 2$ (I) holds, then $M_1 = M_2$ and $N_i \leq W(G)G^{p^{n_j}}N_j$ for $i, j =$ 1, 2 and $i \neq j$ and hence (i) follows.
- (2) If for $i = 1$ (I) and for $i = 2$ (II) happen, then $M_1 \leq M_2$, $N_2 \leq$ $W(G)G^{p^{n_1}}N_1$ and so $s = s_2$, $N_1 \leq N_2$ and $exp(G/W(G)N_2) \leq p^{a^{t_2}}$. Since $a^{t_2} \leq n_1$, $G^{p^{n_1}} \leq W(G)N_2$ and $N_1 \leq N_2$ implies that $W(G)N_2$ $W(G)G^{p^{n_1}}N_1$. Furthermore from $M_1 \leq M_2$, it follows that $s = s_1$ and consequently, $M_1 \leq M_2$, $s = s_1 = s_2$, $N_1 \leq N_2 \leq W(G)G^{p^{n_1}}N_1$ and $exp(G/W(G)N_2) \leq p^{a^{t_2}}$ and so in this case (ii) holds.
- (3) If for $i = 1$ (II) and for $i = 2$ (I) happen, then with the argument similar to the case (2) we may conclude (ii) holds.
- (4) Finally if $i = 1, 2$ (II) holds, then evidently $N_1 = N_2 = N_1 N_2$, $s = s_1 = s_2$ and $exp(G/W(G)N_1) \leq p^{a^{t_i}}$, where $i = 1, 2$ that is (iv).

Conversely. First assume that (i) holds. Then we have $M_1 = M_2 = M$ and from $N_i \leq W(G)G^{p^{n_j}}N_j$. It follows that $Hom(G/N_j, M) \cong Hom(G/N_1N_2, M)$ for $i, j = 1, 2$ and $i \neq j$. Consequently $Aut_{N_i}^M(G) = Aut_{N_1N_2}^M(G)$ and hence $Aut_{N_1}^M(G) = Aut_{N_2}^M(G).$

Now suppose that (ii) holds. Since $N_2 = N_1 N_2$, $s = s_2$ and $exp(G/W(G)N_2) \leq$ $p^{a^{t_2}}$, we have $Aut_{N_1N_2}^{M_1 \cap M_2}(G) = Aut_{N_1N_2}^{M_2}(G) = Aut_{N_2}^{M_2}(G)$. Also $N_2 \leq W(G)G^{p^{n_1}}N_1$ concludes that $Aut_{N_1}^{M_1}(G) = Aut_{N_1N_2}^{M_1}(G) = Aut_{N_1N_2}^{M_1 \cap M_2}(G)$ since $M_1 \leq M_2$. Therefore $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$. The case (ii) follows, by a similar argument.

Finally suppose that (iv) holds. So $N_1 = N_2 = N$, $s = s_1 = s_2$ and $exp(G/W(G)N_i) \leq p^{a^{t_i}}$ for $i = 1, 2$, it follows that $Aut_N^{M_i}(G) = Aut_N^{M_1 \cap M_2}(G)$ and this completes the proof.

Note that here also, the condition " $M_i \leq W^*(G) \cap N_i$ for $i = 1, 2$ " can be replaced by condition "*G* be a PN-group".

Corollary 4 *Let G be a finite p-group which is PN and W-nilpotent group. Let* M_1 , M_2 , N_1 *and* N_2 *be two normal subgroups of G such that* $M_i \leq W^*(G)$ $for i = 1, 2$ *. Then* $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if one of the following *statements holds:*

- (i) $M_1 = M_2$ and $N_i \leq W(G)G^{p^{n_j}}N_j$ for $i = 1, 2$ and $i \neq j$;
- (ii) $M_1 \leq M_2$, $s = s_1 = s_2$, $N_1 \leq N_2 \leq W(G)G^{p^{n_1}}N_1$ and $exp(G/W(G)N_2)$ $p^{a^{t_2}}$;
- (iii) $M_2 \leq M_1$, $s = s_1 = s_2$, $N_2 \leq N_1 \leq W(G)G^{p^{n_2}}N_2$ and $exp(G/W(G)N_1) \leq$ $p^{a^{t_1}}$;

$$
(iv) N_1 = N_2, s = s_1 = s_2 \text{ and } exp(G/W(G)N_1) \le p^{a^{t_i}} \text{ for } i = 1, 2
$$

Another interesting equality is indicated by the following result.

Theorem 6 *Let G be a finite p-group which is PN and W-nilpotent group. Let* M , , N_1 *and* N_2 *be normal subgroups of* G *such that* $M \leq W^*(G)$ *. If the invariants of M (in the cyclic decomposition) are greather than or equal to* $exp(G/W(G)N_i)$ for $i = 1, 2$ *then* $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ *if and only if* $W(G)N_1 = W(G)N_2$.

Proof Let $M = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_s}}$ and $exp(G/W(G)N_i) = p^{n_i}$ for $i = 1, 2$. First assume that $N_2 \leq N_1$. By assumption $a_i \leq a_j$ for all $1 \leq j \leq s$ and $i = 1, 2$. Consequently we have

$$
Hom(G/N_i, M) \cong Hom(G/N_i, C_{p^{a_1}}) \times \cdots \times Hom(G/N_i, C_{p^{a_s}}) \cong (G/W(G)N_i)^n.
$$

Therefore $Aut_{N_1}^M(G) = Aut_{N_2}^M(G)$ if and only if $G/W(G)N_1 = G/W(G)N_2$ or equivalently $W(G)N_1 = W(G)N_2$. Since $Aut_{N_1}^M(G) = Aut_{N_2}^M(G)$ if and only if $Aut_{N_i}^M(G) = Aut_{N_1N_2}^M(G)$ for $i = 1, 2$, the general case follows.

References

- 1. J.E. Adney and T. Yen,Automorphisms of a *p*-group, Illinois J. Math, 9, 137–143 (1965).
- 2. M.S. Attar, Finite *p*-group in which each central automorphism fixes center element-wise, Communication in Algebra, 40, 1096–1102 (2012).
- 3. M.S. Attar, On the marginal automorphisms of a group, Comm. Algebra, 37, no 7, 2300– 2308 (2009).
- 4. A.Z. Azhdari, M.A. Malayeri, On automorphisms fixing certain groups, J. Algebra Appl, 12, 1250163 (2013).
- 5. M.J. Curran, D.J. McCaughan, Central automorphisms that are almost inner, Commun. Algebra, 29(5), 2081–2087 (2001) .
- 6. A. Jamali, H. Mousavi, On the central automorphisms group of finite *p*-groups, Algebra Colloquium, 9, 7–14 (2002).
- 7. S.H. Jaffari, Central automorphism grroups fixing the center element-wise, Ent. Electron. J. Aljebra, 9, 167–170 (2011).
- 8. S.M. Tehrani, F. Shahini, Varietal nilpotent groups, World Applied Science Journal, 12, 2314–2316 (2012).
- 9. M.K. Yadave, On central automorphisms fixing the center ele7ment-wise, Commun. Aljebra, 37, 4325—4331 (2009).