On Marginal Automorphisms of a Group Fixing the Certain Subgroup

Mohammad Mehdi Nasrabadi · Samane Hajizade*

Received: 16 March 2017 / Accepted: 16 July 2017

Abstract Let \mathcal{W} be a variety of groups defined by a set W of laws and G be a finite p-group in \mathcal{W} . The automorphism α of a group G is said to be a marginal automorphism (with respect to W), if for all $x \in G$, $x^{-1}\alpha(x) \in W^*(G)$, where $W^*(G)$ is the marginal subgroup of G. Let M, N be two normal subgroups of G. By $Aut^M(G)$, we mean the subgroup of Aut(G) consisting of all automorphisms which centralize G/M. $Aut_N(G)$ is used to show the subgroup of Aut(G) consisting of all automorphisms which centralize N. We denote $Aut_N(G) \cap Aut^M(G)$ by $Aut_N^M(G)$. In this paper, we obtain a necessary and sufficient condition that $Aut_{w^*}(G) = Aut_{W^*(G)}^{W^*(G)}(G)$.

Keywords \mathcal{W} -nilpotent group \cdot marginal automorphism \cdot purely non-abelian group

Mathematics Subject Classification (2010) 20D45 · 20E36

Mohammad Mehdi Nasrabadi Department of Mathematics, University of Birjand, Iran. Tel.: +98-56-32202346 Fax: +98-56-32202346 E-mail: mnasrabadi@birjand.ac.ir

*Corresponding author Samane Hajizade Department of Mathematics, University of Birjand, Iran. E-mail: hajizadehmath@gmail.com

© 2017 Damghan University. All rights reserved. http://gadm.du.ac.ir/

1 Introduction

2 Introduction and results

Let G be a group and F_{∞} be the free group on the countable set $\{x_1, x_2, \dots\}$ and W be a non-empty subset of F_{∞} . Suppose that

$$W(G) = \langle w(g_1, \cdots, g_r) | w = w(x_1, \cdots, x_r) \in W \text{ and } g_1, \cdots, g_r \in G \rangle$$

and

$$W^{*}(G) = \left\{ g \in G \mid w(g_{1}, \cdots, g_{i-1}, g_{i}g, g_{i+1}, \cdots, g_{r}) = w(g_{1}, \cdots, g_{r}) \right\}$$

for all $w \in W$, for all $g_{1}, \cdots, g_{r} \in G$ and for all $1 \le i \le r \right\}$.

For a group G, W(G) and $W^*(G)$ are called, respectively, the verbal subgroup and the marginal subgroup of G with respect to W (see [8]). The verbal subgroup W(G) is a fully invariant subgroup of G, and the marginal subgroup $W^*(G)$ is a characteristic subgroup of G.

We call an automorphism α of G a marginal automorphism with respect to W if $x^{-1}\alpha(x) \in W^*(G)$ for all $x \in G$.

The set of all marginal automorphisms of G forms a normal subgroup $Aut_{w^*}(G)$ of the automorphism group Aut(G) of G. If we take $W = \{[x_1, x_2]\}$ where $[x_1, x_2] = x_1^{-1}x_2^{-1}x_1x_2$, then W(G) = G' and $W^*(G) = Z(G)$ where G' and Z(G) are the commutator subgroup and the center of G, respectively.

In this case, $Aut_{w^*}(G)$ is denoted by $Aut_c(G)$ and the elements of $Aut_c(G)$ are called *central automorphism* of G. There are some well-known results about central automorphisms of G (for example see [1], [6] and [7]). Let M, N be two normal subgroups of G. By $Aut^M(G)$, we mean the subgroup of Aut(G)consisting of all automorphisms which centralize G/M. $Aut_N(G)$ is used to show the subgroup of Aut(G) consisting of all automorphisms which centralize N. We denote $Aut_N(G) \cap Aut^M(G)$ by $Aut^N_N(G)$.

Let be \mathcal{W} a variety of groups defined by set W of laws then a group G is said to be \mathcal{W} -nilpotent if there exist a series

$$1 = G_0 \le G_1 \le \dots \le C_k = G \tag{1}$$

such that $G_i \leq G$ and $G_{i+1}/G_i \leq W^*(G/G_i)$, for $0 \leq i \leq n$. The length of the shortest series (1) is the W-nilpotent class of G.

For a finite *p*-group G define $\Omega_1(G) = \langle x \in G \mid x^p = 1 \rangle$.

A non-abelian group G is called purely non-abelian if it has no non-trivial abelian direct factor. In this article such that group showed by PN-group. For any group H and abelian group K, Hom(H, K) denote the group of all homomorphisms from H to K.

Azhdari and Malayeri [4] found necessary and sufficient condition that

 $Aut_N^M(G) = Aut_c(G)$ and several corollaries where M, N are normal subgroups of a finite *p*-group G.

Through this article, W is a variety of groups and G is a finite p-group in

 \mathcal{W} which $W^*(G) \leq Z(G)$ and G/W(G) is abelian also by the assumption $M \leq W^*(G)$ we have :

$$M = C_{p^{a_1}} \times C_{p^{a_2}} \times \dots \times C_{p^{a_s}} \tag{2}$$

$$M = C_{p^{a_1}} \times C_{p^{a_2}} \times \dots \times C_{p^{a_s}}$$

$$W^*(G) = C_{p^{b_1}} \times C_{p^{b_2}} \times \dots \times C_{p^{b_{s'}}}$$

$$G/W(G) = C_{p^{d_1}} \times C_{p^{d_2}} \times \dots \times C_{p^{d_r}}$$

$$(2)$$

$$(3)$$

$$(4)$$

$$G/W(G) = C_{n^{d_1}} \times C_{n^{d_2}} \times \dots \times C_{n^{d_r}}$$

$$\tag{4}$$

(5)

where $a_1 \ge a_2 \ge \cdots a_s > 0$, $b_1 \ge b_2 \ge \cdots b_{s'} > 0$ and also $d_1 \ge d_2 \ge$ $\cdots d_r > 0$

Let t be the smallest integer between 1 and s such that $a_j = b_j$ for all $t \neq s$ and $t+1 \leq j \leq s$. By this assumption our main results are the following. Main theorem: Let \mathcal{W} be a variety of group, G be finite *p*-group in \mathcal{W} which is \mathcal{W} -nilpotent . Let M_1, M_2, N_1 and N_2 be normal subgroups of G such that $M_i \leq W^*(G) \cap N_i$ for $i = 1, 2, M_1 \leq M_2$ and $N_1 \leq N_2$. Then $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if one of the following statements holds:

- (i) $M_1 = M_2$ and $N_1 \leq W(G)G^{p^n}N_2$ where $exp(M_1) = p^n$ or
- (ii) $N_1 = N_2$, s = s' and $exp(G/W(G)N_1) \leq p^{a_t}$, where t is the smallest integer between 1 and s such that $a_j = b_j$.

By using the above notation we have the following corollary.

Corollary. Let G be a finite p-group which is \mathcal{W} -nilpotent group. Let M and N be two normal subgroups of G such that $M \leq W^*(G) \leq W(G)$. Then

(i) $Aut_N^M(G) = Aut_{W^*(G)}^{W^*(G)}(G)$ if and only if one of the following statements holds:

 $M = W^*(G)$ and $N \leq W(G)G^{p^n}W^*(G)$ where $exp(W^*(G)) \leq p^{a_n}$ or $N = W^*(G), s = s' \text{ and } exp(G/W(G)W^*(G)) \le p^{a_t};$

(ii) $Aut_N^M(G) = Aut_{w^*}(G)$ if and only if one of the following statements holds: $M = W^*(G)$ and $N \leq W(G)G^{p^n}$ where $exp(W^*(G)) = p^{a_n}$ or $N \leq W(G)$, s = s' and $exp(G/W(G)) \leq p^{a_t}$.

3 Preliminary results

Adeney and Yen [1, Theorem 1] prove that if G is a purely non-abelian, then there exist a bijection between $Aut_c(G)$ and Hom(G/G', Z(G)). Also Jamali and Mousavi in [6] prove that if G is a finite group such that $Z(G) \leq G'$ then $Aut_c(G) \cong Hom(G/G', Z(G)).$

Similarly Attar in [3] prove the following theorems about marginal automorphisms of a group G:

Theorem 1 [3] Let G be a group and $\emptyset \neq W \subseteq F_{\infty}$ be the set of laws, Then $Aut_{w^*}(G)$ acts trivially on W(G).

Theorem 2 [3] Let G be a purely non-abelian finite group and $\emptyset \neq W \subseteq F_{\infty}$ be the set of laws such that $W^*(G) \leq Z(G)$, then

 $|Aut_{w^*}(G)| = |Hom(G/W(G), W^*(G))|.$

Theorem 3 [3] Let G be a group and $\emptyset \neq W \subseteq F_{\infty}$ be the set of laws such that $W^*(G) \leq Z(G) \cap W(G)$, Then $Aut_{w^*}(G) \cong Hom(G/W(G), W^*(G))$

Proposition 1 [3] Let G be a purely non-abelian finite group and $\emptyset \neq W \subseteq F_{\infty}$ be the set of laws such that $W^*(G)$ is abelian, Then

(1) For each $\alpha \in Hom(G, W^*(G))$ and $t \in W(G)$ we have $\alpha(t) = 1$; (2) $Hom(G/W(G), W^*(G)) \cong Hom(G, W^*(G))$.

By this proposition we have $Aut_{w^*}(G) \cong Aut_{W^*(G)}^{W(G)}(G)$ We recall that through this article \mathcal{W} is a variety of groups and G is a finite *p*-group in \mathcal{W} which $W^*(G) \leq Z(G)$ and G/W(G) is abelian with abelian direct factor (4).

Theorem 4 [3] Let W is a variety of groups and G is W-nilpotent group and $1 \neq N \lhd G$, then $N \cap W^*(G) \neq 1$.

Lemma 1 [3] Let G be a finite PN-group and M, N be two normal subgroups of G such that $M \leq Z(G)$ (in particular $M \leq W^*(G)$ since $W^*(G) \leq Z(G)$), then

$$|Aut_N^M(G)| = |Hom(G/N, M)|.$$

Lemma 2 [3] Let G be a group and M , N be two normal subgroups of G such that $M \leq Z(G) \cap N$, then

$$Aut_N^M(G) \cong Hom(G/N, M)$$

and $Aut_N^M(G)$ is abelian.

Lemma 3 [9] Let A and B be two finite abelian p-groups such that $A = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_s}}$ where $a_1 \ge a_2 \ge \cdots a_s > 0$ and $B = C_{p^{b_1}} \times C_{p^{b_2}} \times \cdots \times C_{p^{b_s}}$ where $b_1 \ge b_2 \ge \cdots b_s > 0$. Let $b_j \ge a_j$ for all j, $1 \le j \le s$ and $b_j > a_j$ for some such j. Let t be the smallest integer between 1 and s such that $a_j = b_j$ for all j such that $t + 1 \le j \le s$. Then for any finite abelian p-group C, |Hom(A, C)| < |Hom(B, C)| if and only if the exponent of C is at least p^{a_t+1} .

4 Proof of the main results

Proof of The Main Theorem: We proceed with a series of steps. Let G be a finite p-group which is W-nilpotent.

Step 1. Let $M \leq W^*(G)$ and $exp(M) = p^n$ and N be a normal subgroup of G. Then for all $f \in Hom(G/N, M)$ we have $ker f = W(G)G^{p^n}N/N$.

Proof. Clearly $W(G)G^{p^n}N/N \leq kerf$ for all $f \in Hom(G/N, M)$. To prove the converse inclusion, let $x \notin W(G)G^{p^n}N$. Since $M \leq W^*(G)$, then

 $Hom(G/N, M) \cong Hom(G/W(G)N, M)$. Put $\overline{G} = G/W(G)N$. \overline{G} is a finite abelian *p*-group and so there exist $x_1, x_2, \cdots, x_t \in G$ such that $\overline{G} = \langle \overline{x}_1 \rangle \times \langle \overline{x}_2 \rangle \times \cdots \times \langle \overline{x}_t \rangle$ and $xW(G)N = x_1^{p^{s_1}} \cdots x_t^{p^{s_t}}W(G)N$ for suitable $s_i \geq 0$ (See [7 lemma 2.2]) Since $x \not \in W(G)G^{p^n}N/W(G)N, \; x_j^{p^{s_j}} \not \in G^{p^n}$ for some $1 \leq j \leq t$ and therefor $s_j < n$. Now choose element $z \in M$ such that $|z| = min\{|\bar{x}_j|, p^n\}$, and define a homomorphism $f_z : \bar{x}_j \mapsto z$ from \bar{G} to M. When $M \leq W^*(G)$ and \overline{K} is a direct factor of \overline{G} then any element f of $Hom(\bar{K}, M)$ induces an element \bar{f} of $Hom(\bar{G}, M)$ which is trivial on the complement of \bar{K} of \bar{G} . To simplify the notion, we will identify f with the corresponding homomorphism from \bar{G} to M. We have $f_z(\bar{x}) = f_z(\bar{x}_i)^{p^{s_j}} = z_i^{p^s} \neq 1$. Thus $\bar{x} \notin kerf$ for $f \in Hom(G/N, M)$ and consequently the equality holds. **Step 2**. Let N_1 , N_2 be two normal subgroups of G such that $N_2 \leq N_1$ and $M \leq W^*(G) \cap N_i$ for i = 1, 2. Then $Aut_{N_1}^M = Aut_{N_2}^M$ if and only if $N_1 \leq W(G)G^{p^n}N_2$ where $exp(M) = p^n$. **Proof.** Since $N_2 \leq N_1$, $Aut_{N_1}^M \leq Aut_{N_2}^M$. Suppose that $N_1 \leq W(G)G^{p^n}N_2$, by

using Step 1, $\overline{N_1} \leq kerf$ for all $f \in Hom(G/N_2, M)$. We have $Hom(G/N_2, M) \cong$ $Hom(G/N_1N_2, M) \cong Hom(G/N_1, M)$, since $N_2 \leq N_1$. That is $|Aut_{N_1}^M(G)| = |$ $Aut_{N_2}^M(G)$ | and hence $Aut_{N_1}^M(G) = Aut_{N_2}^M(G)$. Conversely, assume that $Aut_{N_1}^M(G) =$ $Aut_{N_2}^M(G)$. Then $\alpha(n) = n$ for all $n \in N_1$ and $\alpha \in Aut_{N_2}^M(G)$. By Lemma 2 $\alpha^*(\bar{n}) = 1$ for all $\alpha^* \in Hom(G/N_2, M)$ and $n \in N_1$. Consequently by Step 1, $N_1 \leq W(G)G^{p^n}N_2$, as required.

Step 3. Let N be a normal subgroup of G and $M_1 < M_2 \le W^*(G)G^{p^n}N$. Then $Aut_N^{M_1}(G) = Aut_N^{M_2}(G)$ if and only if s = s' and $exp(G/W(G)N) \leq p^{a_t}$ where t is the smallest integer between 1 and s such that $a_j = b_j$ for all $t+1 \le j \le s$. **Proof.** Since $M_1 \leq M_2$, $Aut_N^{M_1}(G) \leq Aut_N^{M_2}(G)$ by using Lemma 2 $Aut_N^{M_1}(G) =$ $Aut_N^{M_2}(G)$ if and only if $Hom(G/N, M_1) \cong Hom(G/N, M_2)$. first assume that $Aut_N^{M_1}(G) = Aut_N^{M_2}(G)$, then clearly s = s'. So by applying Lemma 3 with $A = M_1$, $B = M_2$ and C = W(G)N we get $exp(G/W(G)N) \leq p^{a_t}$, since if $exp(G/W(G)N) \geq p^{a_t+1}$, then we have $|Hom(G/N, M_1)| < |$ $Hom(G/N, M_2)$ | which is a contradiction. Now suppose that s = s' and $exp(G/W(G)N) \leq p^{a_t}$ then $| Hom(G/N, M_1) | = | Hom(G/N, M_2) |$ and therefor $Aut_N^{\dot{M}_1}(G) \leq Aut_N^{M_2}(G)$.

Step 4. First assume that $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$. By Lemma 2 $Hom(G/N_1, M_1) \cong Hom(G/N_2, M_2)$. If $M_1 \leq M_2$ and $N_2 \leq N_1$ then by Lemma D [5] $Hom(G/N_1, M_1) \leq Hom(G/N_2, M_2)$. This contradiction implies $M_1 = M_2$ or $N_1 = N_2$. If $M_1 = M_2$ then by Step 2, $N_1 \leq W(G)G^{p^n}N_2$. Else, since $M_1 \neq M_2$, $N_1 = N_2$ then by Step 3, it follows that s = s' and

 $exp(G/W(G)N) \le p^{a_t}.$

Conversely, if (i) or (ii) holds it is easy to see that $Hom(G/N_1, M_1) \cong Hom(G/N_2, M_2)$. On the other hand since $M_1 \leq M_2$ and $N_2 \leq N_1$, $Aut_{N_1}^{M_1}(G) \leq Aut_{N_2}^{M_2}(G)$ and consequently $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$, as required. \Box

Remark. Note that in the Proof of The Main Theorem, we use the conditions $M_i \leq W^*(G) \cap N_i$ only to prove the equality $|Aut_{N_i}^{M_i}| = |Hom(G/N_i, M)|$. So by Lemma 1 we may substitute this condition by "G be a PN-group". And by using the same argument, we can easily prove the following Theorem.

Theorem 5 Let G be a finite p-group which is PN and W-nilpotent group. Let M_1 and M_2 be two subgroups which is marginal subgroup and N_1 and N_2 be two normal subgroups of G such that $M_1 \leq M_2$ and $N_2 \leq N_1$. Then $Aut_{N_1}^{M_1}(G) \leq Aut_{N_2}^{M_2}(G)$ if and only if one of the following statements holds:

- (i) $M_1 = M_2$ and $N_1 \leq W(G)G^{p^n}N_2$ where $exp(M_1) \leq p^n$, or
- (ii) $N_1 = N_2$, s = s' and $exp(G/W(G)N_1) \le p^{a_t}$ where t is the smallest integer between 1 and s such that $a_j = b_j$ for all $t + 1 \le j \le s$.

The Main Theorem has a number of important consequences. As a first application of this we get the following result.

Corollary 1 Let G be a finite p-group which is W-nilpotent group. Let M and N be two normal subgroups of G such that $M \leq W^*(G) \leq W(G)$. Then

(i) $Aut_N^M(G) = Aut_{W^*(G)}^{W^*(G)}(G)$ if and only if one of the following statements holds:

 $M = W^*(G) \text{ and } N \leq W(G)G^{p^n}W^*(G) \text{ where } exp(W^*(G)) \leq p^{a_n} \text{ or } N = W^*(G), s = s' \text{ and } exp(G/W(G)W^*(G)) \leq p^{a_t};$

(ii) $Aut_N^M(G) = Aut_{w^*}(G)$ if and only if one of the following statements holds: $M = W^*(G)$ and $N \le W(G)G^{p^n}$ where $exp(W^*(G)) = p^{a_n}$ or $N \le W(G)$, s = s' and $exp(G/W(G)) \le p^{a_t}$.

Proof (i) The result follows immediately by applying The Main Theorem with $M_1 = M$, $N_1 = N$ and $M_2 = N_2 = W^*(G)$. To prove (ii), note that if M contained in the marginal subgroup of G, then $Aut_N^M(G) = Aut_{NW(G)}^M(G)$. Also $M \leq W^*(G) \leq N$ follows that $Aut_{w^*}(G) = Aut_{W^*(G)}^M(G)$ and since G is a PN-group therefor, by applying Theorem 5 with $M_1 = M$, $N_1 = NW(G)$, $M_2 = W^*(G)$ and $N_2 = W(G)$, (ii) holds.

Conversely, if the firs part of (ii) holds then

$$Hom(G/N, M) \cong Hom(G/N, W^*(G)) \cong Hom(G/W(G)N, W^*(G))$$
$$\cong Hom(G/W(G), W^*(G))$$

Now if the second part of (ii) holds then

 $Hom(G/N, M) \cong Hom(G/NW(G), W^*(G)) \cong Hom(G/N, W^*(G))$

hence $|Hom(G/N, M)| = |Hom(G/W(G), W^*(G))|$ or equivalently

$$Aut_N^M(G) = Aut_{w^*}(G)$$
.

This corollary yields some following results.

Corollary 2 Let G be a finite p-group which is W-nilpotent group. Then $Aut_{w^*}(G) = Aut_{W^*(G)}^{W^*(G)}(G)$ if and only if $W^*(G) \leq W(G)G^{p^n}$ where $exp(W^*(G)) =$ p^n .

Proof It follows from Corollary 1 when $M = N = W^*(G)$.

Corollary 3 Let G be a finite p-group which is W-nilpotent group. Let M_1 , M_2 , N_1 and N_2 be normal subgroups of G such that $M_i \leq W^*(G) \cap N_i$ for i = 1, 2. Then $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if one of the following statements holds:

- (i) $M_1 = M_2$ and $N_i \leq W(G)G^{p^{n_j}}N_j$ for i = 1, 2 and $i \neq j$; (ii) $M_1 \leq M_2$, $s = s_1 = s_2$, $N_1 \leq N_2 \leq W(G)G^{p^{n_1}}N_1$ and $exp(G/W(G)N_2) \leq 1$ $p^{a^{t_2}}$.
- (iii) $M_2 \leq M_1$, $s = s_1 = s_2$, $N_2 \leq N_1 \leq W(G)G^{p^{n_2}}N_2$ and $\exp(G/W(G)N_1) \leq M_1$ $p^{a^{t_1}};$

(iv)
$$N_1 = N_2$$
, $s = s_1 = s_2$ and $exp(G/W(G)N_1) \le p^{a^{t_i}}$ for $i = 1, 2$

Proof First assume that $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$. Therefore we have $Aut_{N_1}^{M_1}(G) = Aut_{N_1N_2}^{M_1 \cap M_2}(G) = Aut_{N_2}^{M_2}(G)$. Clearly , $M_1 \cap M_2 \leq M_i$ and $N_i \leq N_1N_2$ for i = 1, 2 and so we may apply The Main Theorem. Since $Aut_{N_i}^{M_i}(G) =$ $Aut_{N_1N_2}^{M_1\cap M_2}(G)$ for i=1,2 one of the following case happens.

- (I) $M_i = M_1 \cap M_2$ and $N_1 N_2 \leq W(G) G^{p^n_i} N_i$. So $M_i \leq M_j$ and $N_j \leq M_j$ $W(G)G^{p^{n_i}}N_i$ for $i \neq j$. Or,
- (II) $N_i = N_1 N_2$, $s = s_i$ and $exp(G/W(G)N_i) \le p^{a^{t_i}}$. So $N_i \le N_i$, $s = s_i$ and $exp(G/W(G)N_i) \le p^{a^{t_i}}$ for $i \ne j$.

Therefore we have the following four cases:

- (1) If for i = 1, 2 (I) holds, then $M_1 = M_2$ and $N_i \leq W(G)G^{p^{n_j}}N_j$ for i, j =1, 2 and $i \neq j$ and hence (i) follows.
- (2) If for i = 1 (I) and for i = 2 (II) happen, then $M_1 \leq M_2$, $N_2 \leq$ $W(G)G^{p^{n_1}}N_1$ and so $s = s_2$, $N_1 \leq N_2$ and $exp(G/W(G)N_2) \leq p^{a^{t_2}}$. Since $a^{t_2} \leq n_1$, $G^{p^{n_1}} \leq W(G)N_2$ and $N_1 \leq N_2$ implies that $W(G)N_2 =$ $W(G)G^{p^{n_1}}N_1$. Furthermore from $M_1 \leq M_2$, it follows that $s = s_1$ and consequently, $M_1 \leq M_2$, $s = s_1 = s_2$, $N_1 \leq N_2 \leq W(G)G^{p^{n_1}}N_1$ and $exp(G/W(G)N_2) \le p^{a^{t_2}}$ and so in this case (ii) holds.

- (3) If for i = 1 (II) and for i = 2 (I) happen, then with the argument similar to the case (2) we may conclude (ii) holds.
- (4) Finally if i = 1, 2 (II) holds, then evidently $N_1 = N_2 = N_1 N_2$, $s = s_1 = s_2$ and $exp(G/W(G)N_1) \leq p^{a^{t_i}}$, where i = 1, 2 that is (iv).

Conversely. First assume that (i) holds. Then we have $M_1 = M_2 = M$ and from $N_i \leq W(G)G^{p^{n_j}}N_j$. It follows that $Hom(G/N_j, M) \cong Hom(G/N_1N_2, M)$ for i, j = 1, 2 and $i \neq j$. Consequently $Aut_{N_i}^M(G) = Aut_{N_1N_2}^M(G)$ and hence $Aut_{N_1}^M(G) = Aut_{N_2}^M(G).$

Now suppose that (ii) holds. Since $N_2 = N_1 N_2$, $s = s_2$ and $exp(G/W(G)N_2) \leq$ $p^{a^{t_2}}, \text{ we have } Aut_{N_1N_2}^{M_1 \cap M_2}(G) = Aut_{N_1N_2}^{M_2}(G) = Aut_{N_2}^{M_2}(G). \text{ Also } N_2 \leq W(G)G^{p^{n_1}}N_1$ concludes that $Aut_{N_1}^{M_1}(G) = Aut_{N_1N_2}^{M_1}(G) = Aut_{N_1N_2}^{M_1 \cap M_2}(G)$ since $M_1 \leq M_2$. Therefore $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$. The case (ii) follows, by a similar argument.

Finally suppose that (iv) holds. So $N_1 = N_2 = N$, $s = s_1 = s_2$ and $exp(G/W(G)N_i) \leq p^{a^{t_i}}$ for i = 1, 2, it follows that $Aut_N^{M_i}(G) = Aut_N^{M_1 \cap M_2}(G)$ and this completes the proof.

Note that here also, the condition " $M_i \leq W^*(G) \cap N_i$ for i = 1, 2" can be replaced by condition "G be a PN-group".

Corollary 4 Let G be a finite p-group which is PN and W-nilpotent group. Let M_1 , M_2 , N_1 and N_2 be two normal subgroups of G such that $M_i \leq W^*(G)$ for i = 1, 2. Then $Aut_{N_1}^{\overline{M}_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if one of the following statements holds:

- (i) $M_1 = M_2$ and $N_i \le W(G)G^{p^{n_j}}N_j$ for i = 1, 2 and $i \ne j$; (ii) $M_1 \le M_2$, $s = s_1 = s_2$, $N_1 \le N_2 \le W(G)G^{p^{n_1}}N_1$ and $exp(G/W(G)N_2) \le 1$ $p^{a^{t_2}}$
- (*iii*) $M_2 \leq M_1$, $s = s_1 = s_2$, $N_2 \leq N_1 \leq W(G)G^{p^{n_2}}N_2$ and $\exp(G/W(G)N_1) \leq M_2$ $p^{a^{t_1}}$.

(*iv*)
$$N_1 = N_2$$
, $s = s_1 = s_2$ and $exp(G/W(G)N_1) \le p^{a^{t_i}}$ for $i = 1, 2$

Another interesting equality is indicated by the following result.

Theorem 6 Let G be a finite p-group which is PN and W-nilpotent group. Let M, N_1 and N_2 be normal subgroups of G such that $M \leq W^*(G)$. If the invariants of M (in the cyclic decomposition) are greather than or equal to $exp(G/W(G)N_i)$ for i = 1, 2 then $Aut_{N_1}^{M_1}(G) = Aut_{N_2}^{M_2}(G)$ if and only if $W(G)N_1 = W(G)N_2.$

Proof Let $M = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_s}}$ and $exp(G/W(G)N_i) = p^{n_i}$ for i = 1, 2. First assume that $N_2 \leq N_1$. By assumption $a_i \leq a_j$ for all $1 \leq j \leq s$ and i = 1, 2. Consequently we have

$$Hom(G/N_i, M) \cong Hom(G/N_i, C_{p^{a_1}}) \times \dots \times Hom(G/N_i, C_{p^{a_s}}) \cong (G/W(G)N_i)^n$$

Therefore $Aut_{N_1}^M(G) = Aut_{N_2}^M(G)$ if and only if $G/W(G)N_1 = G/W(G)N_2$ or equivalently $W(G)N_1 = W(G)N_2$. Since $Aut_{N_1}^M(G) = Aut_{N_2}^M(G)$ if and only if $Aut_{N_i}^M(G) = Aut_{N_1N_2}^M(G)$ for i = 1, 2, the general case follows.

References

- 1. J.E. Adney and T. Yen, Automorphisms of a *p*-group, Illinois J. Math, 9, 137–143 (1965).
- 2. M.S. Attar, Finite *p*-group in which each central automorphism fixes center element-wise, Communication in Algebra, 40, 1096–1102 (2012).
- 3. M.S. Attar, On the marginal automorphisms of a group, Comm. Algebra, 37, no 7, 2300–2308 (2009).
- A.Z. Azhdari, M.A. Malayeri, On automorphisms fixing certain groups, J. Algebra Appl, 12, 1250163 (2013).
- 5. M.J. Curran, D.J. McCaughan, Central automorphisms that are almost inner, Commun. Algebra, 29(5), 2081–2087 (2001) .
- A. Jamali, H. Mousavi, On the central automorphisms group of finite *p*-groups, Algebra Colloquium, 9, 7–14 (2002).
- S.H. Jaffari, Central automorphism groups fixing the center element-wise, Ent. Electron. J. Aljebra, 9, 167–170 (2011).
- S.M. Tehrani, F. Shahini, Varietal nilpotent groups, World Applied Science Journal, 12, 2314–2316 (2012).
- M.K. Yadave, On central automorphisms fixing the center ele7ment-wise, Commun. Aljebra, 37, 4325—4331 (2009).