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Abstract Let W be a variety of groups defined by a set W of laws and G
be a finite p-group in W. The automorphism α of a group G is said to be
a marginal automorphism (with respect to W ), if for all x ∈ G, x−1α(x) ∈
W ∗(G), where W ∗(G) is the marginal subgroup of G. Let M,N be two normal
subgroups of G. By AutM (G), we mean the subgroup of Aut(G) consisting
of all automorphisms which centralize G/M . AutN (G) is used to show the
subgroup of Aut(G) consisting of all automorphisms which centralize N . We
denote AutN (G)∩AutM (G) by AutMN (G). In this paper, we obtain a necessary

and sufficient condition that Autw∗(G) = Aut
W∗(G)
W∗(G)(G).
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1 Introduction

2 Introduction and results

Let G be a group and F∞ be the free group on the countable set {x1, x2, · · · }
and W be a non-empty subset of F∞. Suppose that

W (G) = ⟨w(g1, · · · , gr)|w = w(x1, · · · , xr) ∈ W and g1, · · · , gr ∈ G⟩

and

W ∗(G) =
{
g ∈ G | w(g1, · · · , gi−1, gig, gi+1, · · · , gr) = w(g1, · · · , gr)

for all w ∈ W, for all g1, · · · , gr ∈ G and for all 1 ≤ i ≤ r
}
.

For a group G, W (G) and W ∗(G) are called, respectively, the verbal subgroup
and the marginal subgroup of G with respect to W (see [8]). The verbal sub-
group W (G) is a fully invariant subgroup of G, and the marginal subgroup
W ∗(G) is a characteristic subgroup of G.

We call an automorphism α of G a marginal automorphism with respect
to W if x−1α(x) ∈ W ∗(G) for all x ∈ G.
The set of all marginal automorphisms ofG forms a normal subgroupAutw∗(G)
of the automorphism group Aut(G) of G. If we take W = {[x1, x2]} where
[x1, x2] = x−1

1 x−1
2 x1x2, then W (G) = G′ and W ∗(G) = Z(G) where G′ and

Z(G) are the commutator subgroup and the center of G, respectively.
In this case, Autw∗(G) is denoted by Autc(G) and the elements of Autc(G) are
called central automorphism of G. There are some well-known results about
central automorphisms of G ( for example see [1], [6] and [7] ). Let M , N be
two normal subgroups of G. By AutM (G), we mean the subgroup of Aut(G)
consisting of all automorphisms which centralize G/M . AutN (G) is used to
show the subgroup of Aut(G) consisting of all automorphisms which central-
ize N . We denote AutN (G) ∩AutM (G) by AutMN (G).
Let be W a variety of groups defined by set W of laws then a group G is said
to be W-nilpotent if there exist a series

1 = G0 ≤ G1 ≤ · · · ≤ Ck = G (1)

such that Gi EG and Gi+1/Gi ≤ W ∗(G/Gi), for 0 ≤ i ≤ n. The length of the
shortest series (1) is the W-nilpotent class of G.
For a finite p-group G define Ω1(G) = ⟨x ∈ G | xp = 1⟩.
A non-abelian group G is called purely non-abelian if it has no non-trivial
abelian direct factor. In this article such that group showed by PN-group. For
any group H and abelian group K , Hom(H,K) denote the group of all ho-
momorphisms from H to K.
Azhdari and Malayeri [4] found necessary and sufficient condition that
AutMN (G) = Autc(G) and several corollaries where M , N are normal sub-
groups of a finite p-group G.
Through this article, W is a variety of groups and G is a finite p-group in
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W which W ∗(G) ≤ Z(G) and G/W (G) is abelian also by the assumption
M ≤ W ∗(G) we have :

M = Cpa1 × Cpa2 × · · · × Cpas (2)

W ∗(G) = Cpb1 × Cpb2 × · · · × Cpb
s′ (3)

G/W (G) = Cpd1 × Cpd2 × · · · × Cpdr (4)

(5)

where a1 ≥ a2 ≥ · · · as > 0 , b1 ≥ b2 ≥ · · · bs′ > 0 and also d1 ≥ d2 ≥
· · · dr > 0
Let t be the smallest integer between 1 and s such that aj = bj for all t ̸= s
and t+ 1 ≤ j ≤ s. By this assumption our main results are the following.
Main theorem: Let W be a variety of group, G be finite p-group in W
which is W-nilpotent . Let M1,M2, N1 and N2 be normal subgroups of G
such that Mi ≤ W ∗(G) ∩ Ni for i = 1, 2, M1 ≤ M2 and N1 ≤ N2. Then
AutM1

N1
(G) = AutM2

N2
(G) if and only if one of the following statements holds:

(i) M1 = M2 and N1 ≤ W (G)Gpn

N2 where exp(M1) = pn or
(ii) N1 = N2, s = s′ and exp(G/W (G)N1) ≤ pat , where t is the smallest

integer between 1 and s such that aj = bj .

By using the above notation we have the following corollary.
Corollary. Let G be a finite p-group which is W-nilpotent group. Let M and
N be two normal subgroups of G such that M ≤ W ∗(G) ≤ W (G). Then

(i) AutMN (G) = Aut
W∗(G)
W∗(G)(G) if and only if one of the following statements

holds:
M = W ∗(G) and N ≤ W (G)Gpn

W ∗(G) where exp(W ∗(G)) ≤ pan or
N = W ∗(G), s = s′ and exp(G/W (G)W ∗(G)) ≤ pat ;

(ii) AutMN (G) = Autw∗(G) if and only if one of the following statements holds:
M = W ∗(G) and N ≤ W (G)Gpn

where exp(W ∗(G)) = pan or N ≤ W (G),
s = s′ and exp(G/W (G)) ≤ pat .

3 Preliminary results

Adeney and Yen [1, Theorem 1] prove that if G is a purely non-abelian,
then there exist a bijection between Autc(G) and Hom(G/G′, Z(G)) . Also Ja-
mali and Mousavi in [6] prove that if G is a finite group such that Z(G) ≤ G′

then Autc(G) ∼= Hom(G/G′, Z(G)).
Similarly Attar in [3] prove the following theorems about marginal automor-
phisms of a group G:
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Theorem 1 [3] Let G be a group and ∅ ̸= W ⊆ F∞ be the set of laws, Then
Autw∗(G) acts trivially on W (G).

Theorem 2 [3] Let G be a purely non-abelian finite group and ∅ ̸= W ⊆ F∞
be the set of laws such that W ∗(G) ≤ Z(G), then

|Autw∗(G)| = |Hom
(
G/W (G),W ∗(G)

)
|.

Theorem 3 [3] Let G be a group and ∅ ̸= W ⊆ F∞ be the set of laws such
that W ∗(G) ≤ Z(G) ∩W (G), Then Autw∗(G) ∼= Hom

(
G/W (G),W ∗(G)

)
Proposition 1 [3] Let G be a purely non-abelian finite group and ∅ ̸= W ⊆
F∞ be the set of laws such that W ∗(G) is abelian, Then

(1) For each α ∈ Hom
(
G,W ∗(G)

)
and t ∈ W (G) we have α(t) = 1;

(2) Hom
(
G/W (G),W ∗(G)

) ∼= Hom
(
G,W ∗(G)

)
.

By this proposition we have Autw∗(G) ∼= Aut
W (G)
W∗(G)(G) We recall that through

this article W is a variety of groups and G is a finite p-group in W which
W ∗(G) ≤ Z(G) and G/W (G) is abelian with abelian direct factor (4).

Theorem 4 [3] Let W is a variety of groups and G is W-nilpotent group and
1 ̸= N ▹G, then N ∩W ∗(G) ̸= 1.

Lemma 1 [3] Let G be a finite PN-group and M , N be two normal subgroups
of G such that M ≤ Z(G)( in particular M ≤ W ∗(G) since W ∗(G) ≤ Z(G)),
then

|AutMN (G)| = |Hom
(
G/N,M

)
|.

Lemma 2 [3] Let G be a group and M , N be two normal subgroups of G
such that M ≤ Z(G) ∩N , then

AutMN (G) ∼= Hom
(
G/N,M

)
and AutMN (G) is abelian.

Lemma 3 [9] Let A and B be two finite abelian p-groups such that A = Cpa1×
Cpa2 ×· · ·×Cpas where a1 ≥ a2 ≥ · · · as > 0 and B = Cpb1 ×Cpb2 ×· · ·×Cpbs

where b1 ≥ b2 ≥ · · · bs > 0. Let bj ≥ aj for all j , 1 ≤ j ≤ s and bj > aj for
some such j. Let t be the smallest integer between 1 and s such that aj = bj
for all j such that t + 1 ≤ j ≤ s. Then for any finite abelian p-group C,
|Hom(A,C)| < |Hom(B,C)| if and only if the exponent of C is at least pat+1.
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4 Proof of the main results

Proof of The Main Theorem: We proceed with a series of steps. Let G be
a finite p-group which is W-nilpotent.
Step 1. Let M ≤ W ∗(G) and exp(M) = pn and N be a normal subgroup of
G. Then for all f ∈ Hom(G/N,M) we have kerf = W (G)Gpn

N/N .
Proof. Clearly W (G)Gpn

N/N ≤ kerf for all f ∈ Hom(G/N,M). To prove
the converse inclusion, let x ̸∈ W (G)Gpn

N . Since M ≤ W ∗(G), then
Hom(G/N,M) ∼= Hom(G/W (G)N,M). Put Ḡ = G/W (G)N . Ḡ is a fi-
nite abelian p-group and so there exist x1, x2, · · · , xt ∈ G such that Ḡ =
⟨x̄1⟩ × ⟨x̄2⟩ × · · · × ⟨x̄t⟩ and xW (G)N = xps1

1 · · ·xpst

t W (G)N for suitable

si ≥ 0 (See [7 lemma 2.2] ) Since x̸̄ ∈ W (G)Gpn

N/W (G)N , xpsj

j ̸∈ Gpn

for some 1 ≤ j ≤ t and therefor sj < n. Now choose element z ∈ M such
that |z| = min{|x̄j |, pn}, and define a homomorphism fz : x̄j 7→ z from Ḡ
to M . When M ≤ W ∗(G) and K̄ is a direct factor of Ḡ then any element f
of Hom(K̄,M) induces an element f̄ of Hom(Ḡ,M) which is trivial on the
complement of K̄ of Ḡ. To simplify the notion , we will identify f with the corre-
sponding homomorphism from Ḡ to M . We have fz(x̄) = fz(x̄j

psj
) = zp

s

j ̸= 1.
Thus x̄ ̸∈ kerf for f ∈ Hom(G/N,M) and consequently the equality holds.
Step 2. Let N1 , N2 be two normal subgroups of G such that N2 ≤ N1

and M ≤ W ∗(G) ∩ Ni for i = 1, 2. Then AutMN1
= AutMN2

if and only if

N1 ≤ W (G)Gpn

N2 where exp(M) = pn.
Proof. Since N2 ≤ N1, Aut

M
N1

≤ AutMN2
. Suppose that N1 ≤ W (G)Gpn

N2, by
using Step 1, N̄1 ≤ kerf for all f ∈ Hom(G/N2,M). We haveHom(G/N2,M) ∼=
Hom(G/N1N2,M) ∼= Hom(G/N1,M), since N2 ≤ N1. That is | AutMN1

(G) |=|
AutMN2

(G) | and henceAutMN1
(G) = AutMN2

(G). Conversely, assume thatAutMN1
(G) =

AutMN2
(G). Then α(n) = n for all n ∈ N1 and α ∈ AutMN2

(G). By Lemma 2
α∗(n̄) = 1 for all α∗ ∈ Hom(G/N2,M) and n ∈ N1. Consequently by Step 1,
N1 ≤ W (G)Gpn

N2, as required.
Step 3. LetN be a normal subgroup ofG andM1 < M2 ≤ W ∗(G)Gpn

N . Then
AutM1

N (G) = AutM2

N (G) if and only if s = s′ and exp(G/W (G)N) ≤ pat where
t is the smallest integer between 1 and s such that aj = bj for all t+1 ≤ j ≤ s.

Proof. SinceM1 ≤ M2,AutM1

N (G) ≤ AutM2

N (G) by using Lemma 2AutM1

N (G) =

AutM2

N (G) if and only if Hom(G/N,M1) ∼= Hom(G/N,M2). first assume

that AutM1

N (G) = AutM2

N (G), then clearly s = s′. So by applying Lemma
3 with A = M1, B = M2 and C = W (G)N we get exp(G/W (G)N) ≤
pat , since if exp(G/W (G)N) ≥ pat+1, then we have | Hom(G/N,M1) |<|
Hom(G/N,M2) | which is a contradiction. Now suppose that s = s′ and
exp(G/W (G)N) ≤ pat then | Hom(G/N,M1) |=| Hom(G/N,M2) | and
thereforAutM1

N (G) ≤ AutM2

N (G).

Step 4. First assume that AutM1

N1
(G) = AutM2

N2
(G). By Lemma 2

Hom(G/N1,M1) ∼= Hom(G/N2,M2). If M1 ≤ M2 and N2 ≤ N1 then by
Lemma D [5] Hom(G/N1,M1) ≤ Hom(G/N2,M2). This contradiction im-
plies M1 = M2 or N1 = N2. If M1 = M2 then by Step 2, N1 ≤ W (G)Gpn

N2.
Else, since M1 ̸= M2, N1 = N2 then by Step 3, it follows that s = s′ and
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exp(G/W (G)N) ≤ pat .
Conversly, if (i) or (ii) holds it is easy to see thatHom(G/N1,M1) ∼= Hom(G/N2,M2).
On the other hand since M1 ≤ M2 and N2 ≤ N1, Aut

M1

N1
(G) ≤ AutM2

N2
(G) and

consequently AutM1

N1
(G) = AutM2

N2
(G), as required. �

Remark. Note that in the Proof of The Main Theorem, we use the conditions
Mi ≤ W ∗(G) ∩ Ni only to prove the equality | AutMi

Ni
|=| Hom(G/Ni,M) |.

So by Lemma 1 we may substitute this condition by ”G be a PN-group”. And
by using the same argument, we can easily prove the following Theorem.

Theorem 5 Let G be a finite p-group which is PN and W-nilpotent group.
Let M1 and M2 be two subgroups which is marginal subgroup and N1 and
N2 be two normal subgroups of G such that M1 ≤ M2 and N2 ≤ N1. Then
AutM1

N1
(G) ≤ AutM2

N2
(G) if and only if one of the following statements holds:

(i) M1 = M2 and N1 ≤ W (G)Gpn

N2 where exp(M1) ≤ pn, or
(ii) N1 = N2, s = s′ and exp(G/W (G)N1) ≤ pat where t is the smallest integer

between 1 and s such that aj = bj for all t+ 1 ≤ j ≤ s.

The Main Theorem has a number of important consequences. As a first
application of this we get the following result.

Corollary 1 Let G be a finite p-group which is W-nilpotent group. Let M and
N be two normal subgroups of G such that M ≤ W ∗(G) ≤ W (G). Then

(i) AutMN (G) = Aut
W∗(G)
W∗(G)(G) if and only if one of the following statements

holds:
M = W ∗(G) and N ≤ W (G)Gpn

W ∗(G) where exp(W ∗(G)) ≤ pan or
N = W ∗(G), s = s′ and exp(G/W (G)W ∗(G)) ≤ pat ;

(ii) AutMN (G) = Autw∗(G) if and only if one of the following statements holds:
M = W ∗(G) and N ≤ W (G)Gpn

where exp(W ∗(G)) = pan or N ≤ W (G),
s = s′ and exp(G/W (G)) ≤ pat .

Proof (i) The result follows immediately by applying The Main Theorem with
M1 = M , N1 = N and M2 = N2 = W ∗(G). To prove (ii), note that if M
contained in the marginal subgroup of G, then AutMN (G) = AutMNW (G)(G).

Also M ≤ W ∗(G) ≤ N follows that Autw∗(G) = Aut
W∗(G)
W∗(G)(G) and since G is

a PN-group therefor, by applying Theorem 5 with M1 = M , N1 = NW (G),
M2 = W ∗(G) and N2 = W (G), (ii) holds.
Conversely, if the firs part of (ii) holds then

Hom
(
G/N,M

) ∼= Hom
(
G/N,W ∗(G)

) ∼= Hom
(
G/W (G)N,W ∗(G)

)
∼= Hom

(
G/W (G),W ∗(G)

)
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Now if the second part of (ii) holds then

Hom
(
G/N,M) ∼= Hom

(
G/NW (G),W ∗(G)

) ∼= Hom
(
G/N,W ∗(G)

)
hence | Hom

(
G/N,M

)
|=| Hom

(
G/W (G),W ∗(G)

)
| or equivalently

AutMN (G) = Autw∗(G) .

This corollary yields some following results.

Corollary 2 Let G be a finite p-group which is W-nilpotent group. Then

Autw∗(G) = Aut
W∗(G)
W∗(G)(G) if and only if W ∗(G) ≤ W (G)Gpn

where exp
(
W ∗(G)

)
=

pn.

Proof It follows from Corollary 1 when M = N = W ∗(G).

Corollary 3 Let G be a finite p-group which is W-nilpotent group. Let M1,
M2, N1 and N2 be normal subgroups of G such that Mi ≤ W ∗(G) ∩ Ni for
i = 1, 2. Then AutM1

N1
(G) = AutM2

N2
(G) if and only if one of the following state-

ments holds:

(i) M1 = M2 and Ni ≤ W (G)Gpnj
Nj for i = 1, 2 and i ̸= j;

(ii) M1 ≤ M2 ,s = s1 = s2 , N1 ≤ N2 ≤ W (G)Gpn1
N1 and exp

(
G/W (G)N2

)
≤

pa
t2
;

(iii) M2 ≤ M1 , s = s1 = s2 , N2 ≤ N1 ≤ W (G)Gpn2
N2 and exp

(
G/W (G)N1

)
≤

pa
t1
;

(iv) N1 = N2, s = s1 = s2 and exp
(
G/W (G)N1

)
≤ pa

ti
for i = 1, 2

Proof First assume thatAutM1

N1
(G) = AutM2

N2
(G). Therefore we haveAutM1

N1
(G) =

AutM1∩M2

N1N2
(G) = AutM2

N2
(G). Clearly , M1 ∩ M2 ≤ Mi and Ni ≤ N1N2

for i = 1, 2 and so we may apply The Main Theorem. Since AutMi

Ni
(G) =

AutM1∩M2

N1N2
(G) for i = 1, 2 one of the following case happens.

(I) Mi = M1 ∩ M2 and N1N2 ≤ W (G)Gpni
Ni. So Mi ≤ Mj and Nj ≤

W (G)Gpni
Ni for i ̸= j. Or,

(II) Ni = N1N2 , s = si and exp
(
G/W (G)Ni

)
≤ pa

ti
. So Nj ≤ Ni, s = si and

exp
(
G/W (G)Ni

)
≤ pa

ti
for i ̸= j.

Therefore we have the following four cases:

(1) If for i = 1, 2 (I) holds, then M1 = M2 and Ni ≤ W (G)Gpnj
Nj for i, j =

1, 2 and i ̸= j and hence (i) follows.
(2) If for i = 1 (I) and for i = 2 (II) happen, then M1 ≤ M2 , N2 ≤

W (G)Gpn1
N1 and so s = s2 , N1 ≤ N2 and exp

(
G/W (G)N2

)
≤ pa

t2
.

Since at2 ≤ n1, G
pn1 ≤ W (G)N2 and N1 ≤ N2 implies that W (G)N2 =

W (G)Gpn1
N1. Furthermore from M1 ≤ M2, it follows that s = s1 and

consequently, M1 ≤ M2, s = s1 = s2, N1 ≤ N2 ≤ W (G)Gpn1
N1 and

exp
(
G/W (G)N2

)
≤ pa

t2
and so in this case (ii) holds.
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(3) If for i = 1 (II) and for i = 2 (I) happen, then with the argument similar
to the case (2) we may conclude (ii) holds.

(4) Finally if i = 1, 2 (II) holds, then evidently N1 = N2 = N1N2, s = s1 = s2
and exp

(
G/W (G)N1

)
≤ pa

ti
, where i = 1, 2 that is (iv).

Conversely. First assume that (i) holds. Then we haveM1 = M2 = M and from
Ni ≤ W (G)Gpnj

Nj . It follows that Hom(G/Nj ,M) ∼= Hom(G/N1N2,M)
for i, j = 1, 2 and i ̸= j. Consequently AutMNi

(G) = AutMN1N2
(G) and hence

AutMN1
(G) = AutMN2

(G).

Now suppose that (ii) holds. SinceN2 = N1N2 , s = s2 and exp
(
G/W (G)N2

)
≤

pa
t2
, we haveAutM1∩M2

N1N2
(G) = AutM2

N1N2
(G) = AutM2

N2
(G). AlsoN2 ≤ W (G)Gpn1

N1

concludes that AutM1

N1
(G) = AutM1

N1N2
(G) = AutM1∩M2

N1N2
(G) since M1 ≤ M2.

Therefore AutM1

N1
(G) = AutM2

N2
(G). The case (ii) follows, by a similar argu-

ment.
Finally suppose that (iv) holds. So N1 = N2 = N , s = s1 = s2 and

exp
(
G/W (G)Ni

)
≤ pa

ti
for i = 1, 2, it follows that AutMi

N (G) = AutM1∩M2

N (G)
and this completes the proof.

Note that here also, the condition ” Mi ≤ W ∗(G)∩Ni for i = 1, 2” can be
replaced by condition ”G be a PN-group”.

Corollary 4 Let G be a finite p-group which is PN and W-nilpotent group.
Let M1, M2, N1 and N2 be two normal subgroups of G such that Mi ≤ W ∗(G)
for i = 1, 2. Then AutM1

N1
(G) = AutM2

N2
(G) if and only if one of the following

statements holds:

(i) M1 = M2 and Ni ≤ W (G)Gpnj
Nj for i = 1, 2 and i ̸= j;

(ii) M1 ≤ M2 ,s = s1 = s2 , N1 ≤ N2 ≤ W (G)Gpn1
N1 and exp

(
G/W (G)N2

)
≤

pa
t2
;

(iii) M2 ≤ M1 , s = s1 = s2 , N2 ≤ N1 ≤ W (G)Gpn2
N2 and exp

(
G/W (G)N1

)
≤

pa
t1
;

(iv) N1 = N2, s = s1 = s2 and exp
(
G/W (G)N1

)
≤ pa

ti
for i = 1, 2

Another interesting equality is indicated by the following result.

Theorem 6 Let G be a finite p-group which is PN and W-nilpotent group.
Let M , , N1 and N2 be normal subgroups of G such that M ≤ W ∗(G). If
the invariants of M (in the cyclic decomposition) are greather than or equal
to exp

(
G/W (G)Ni

)
for i = 1, 2 then AutM1

N1
(G) = AutM2

N2
(G) if and only if

W (G)N1 = W (G)N2.

Proof Let M = Cpa1 × Cpa2 × · · · × Cpas and exp
(
G/W (G)Ni

)
= pni for

i = 1, 2. First assume that N2 ≤ N1. By assumption ai ≤ aj for all 1 ≤ j ≤ s
and i = 1, 2. Consequently we have

Hom(G/Ni,M) ∼= Hom(G/Ni, Cpa1 )× · · · ×Hom(G/Ni, Cpas ) ∼= (G/W (G)Ni)
n.



On Marginal Automorphisms of a Group Fixing the Certain Subgroup 143

Therefore AutMN1
(G) = AutMN2

(G) if and only if G/W (G)N1 = G/W (G)N2 or

equivalently W (G)N1 = W (G)N2. Since AutMN1
(G) = AutMN2

(G) if and only if

AutMNi
(G) = AutMN1N2

(G) for i = 1, 2, the general case follows.
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