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Abstract In this paper, we propose the new concept of optimal solution for
fuzzy variational problems based on the possibility and necessity measures.
Inspired by the well–known embedding theorem, we can transform the fuzzy
variational problem into a bi–objective variational problem. Then the optimal
solutions of fuzzy variational problem can be obtained by solving its corre-
sponding biobjective variational problem.
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1 Introduction

The field of calculus of variations is of significant importance in various dis-
ciplines such as biology, engineering, signal processing, system identification,
control theory, finance and fractional dynamics [4,6,12,1,18] Functional mini-
mization problems naturally occur in engineering and science where minimiza-
tion of functionals, such as, Lagrangian, strain, potential, and total energy, etc.
give the laws governing the systems behavior. Uncertainty is inherent in most
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real-world systems and fuzziness is a kind of uncertainty in real word prob-
lems. The fuzzy calculus of variations forms a suitable setting for mathematical
modeling of real–world problems in which uncertainties or vagueness pervade.
The fuzzy calculus of variations extends the classical variational calculus con-
sidering variables and their derivatives in fuzzy form. There are few papers
dealing with fuzzy variational problem [11,10,9,8]. Recently, Farhadinia [11]
studied necessary optimality conditions for fuzzy variational problems using
the fuzzy differentiability concept due to Buckley and Feuring [5]. Farhadinia’s
work was generalized by Fard et al. [10,9,8]. Fard and Zadeh [10], using α–
differentiability concept, obtained an extended fuzzy Euler–Lagrange condi-
tion. Fard and Salehi [9] investigate fuzzy fractional Euler–Lagrange equa-
tions for fuzzy fractional variational problems defined via generalized fuzzy
fractional Caputo type derivatives.

Puri and Ralescu [20] and Kaleva [16] have proven that the set of all fuzzy
numbers can be embedded into a Banach space isometrically and isomorphi-
cally. Wu and Ma [23] provide a specific Banach space, which shows that the set
of all fuzzy numbers can be embedded into the Banach space C[0, 1]×C[0, 1],
where C[0, 1] is the set of all real–valued bounded functions f on [0, 1] such
that f is left-continuous for any x ∈ (0, 1] and right-continuous at 0, and f has
a right limit for any x ∈ [0, 1). Inspired by this specific Banach space, we can
transform the fuzzy variational problem into a biobjective variational problem
using this embedding theorem. Then necessary and sufficient Pareto optimal-
ity conditions are obtained by converting a biobjective variational problem
into a single or a family of single variational problems with an auxiliary scalar
functional, possibly depending on a parameter.

Due to [17], we will introduce definitions for higher–order fuzzy derivatives
and for the sake of convenience, we will obtain the Euler–Lagrange equations
to the fuzzy variational problems containing second order derivatives, for the
first time in the literature.

In Section 2 and 3, we present some notations on the fuzzy numbers space,
differentiability and integrability of a fuzzy mapping and provide the embed-
ding theorem. The main results concerning the optimal solution of fuzzy con-
straint and unconstraint problems are established in sections 4 and numerical
examples are illustrated for providing the basic techniques to compute the
optimal solutions by resorting to Euler–Lagrange equation, and finally, con-
clusions are discussed in Section 5.

2 Preliminaries

Let us denote by Rf the class of fuzzy numbers, i.e., normal, convex, upper
semicontinuous and compactly supported fuzzy subsets of the real numbers.
For 0 < r ≤ 1, let [ũ]r = {x ∈ R; ũ(x) ≥ r} and [ũ]0 = {x ∈ R; ũ(x) ≥ 0}.
Then, it is well known that [ũ]r is a bounded closed interval for any r ∈ [0, 1].
The notation [ũ]r = [ur, ur] denotes explicitly the r-level set of ũ.
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The following remark shows when [ur, ur] is a valid r-level set of a fuzzy
number.

Remark 1 (See [17] ) The sufficient and necessary conditions for [ur, ur] to
define the parametric form of a fuzzy number are as follows:

(i) ur is a bounded monotonic increasing (nondecreasing) left-continuous func-
tion ∀r ∈ (0, 1] and right-continuous for r = 0.

(ii) ur is a bounded monotonic decreasing (nonincreasing) left-continuous func-
tion ∀r ∈ (0, 1] and right-continuous for r = 0.

(iii) ur ≤ ur, 0 ≤ r ≤ 1.

For ũ, ṽ ∈ Rf and λ ∈ R, the sum ũ+ ṽ and the product λ · ũ are defined by
[ũ+ ṽ]r = [ũ]r+[ṽ]r and [λ· ũ]r = λ[ũ]r for all r ∈ [0, 1], where [ũ]r+[ṽ]r means
the usual addition of two intervals (subsets) of R and λ[ũ]r means the usual
product between a scalar and a subset of R. The product ũ⊙ṽ of fuzzy numbers
ũ and ṽ, is defined by [ũ⊙ṽ]r = [min{urvr, urvr, urvr, urvr},max{urvr, urvr, urvr, urvr}].

We say that the fuzzy number ũ is triangular if u1 = u1, ur = u1 − (1 −
r)(u1 − u0) and ur = u1 − (1− r)(u0 − u1). The triangular fuzzy number u is
generally denoted by ũ =< u0, u1, u0 >. We define the fuzzy zero 0̃x as

0̃x =

{
1 if x = 0,

0 if x ̸= 0.

Definition 1 (See [11] ) We say that f̃ : [a, b] → Rf is continuous at x ∈
[a, b], if both fr(x) and f

r
(x) are continuous functions of x ∈ [a, b] for all

r ∈ [0, 1].

Definition 2 (See [3] ) The generalized Hukuhara difference of two fuzzy
numbers x̃, ỹ ∈ Rf (gH-difference for short) is defined as follows:

x̃⊖gH ỹ = z̃ ⇔ x̃ = ỹ + z̃ or ỹ = x̃+ (−1)z̃.

If z̃ = x̃ ⊖gH ỹ exists as a fuzzy number, then its level cuts [zr, zr] are
obtained by zr = min{xr − yr, xr − yr} and zr = max{xr − yr, xr − yr} for
all r ∈ [0, 1].

Definition 3 (See [15] ) Let x ∈ (a, b) and h be such that x+h ∈ (a, b). The
generalized Hukuhara derivative of a fuzzy-valued function f̃ : (a, b) → Rf at
x is defined by

D(1)
gH f̃(x) = lim

h→0

f̃(x+ h)⊖gH f̃(x)

h
. (1)

If D(1)
gH f̃(x) ∈ Rf satisfying (1) exists, then we say that f̃ is generalized

Hukuhara differentiable (gH-differentiable for short) at x. Also, we say that f̃

is [(1)−gH−]differentiable at x (denoted byD(1)
1 f̃) if [D(1)

gH f̃(x)]r = [ḟ
r
(x), ḟ

r

(x)],

and that f̃ is [(2)−gH]−differentiable at x (denoted by D(1)
2 f̃) if [D(1)

gH f̃(x)]r =

[ḟ
r

(x), ḟ
r
(x)], r ∈ [0, 1].
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Due to [17], we introduce definitions for higher-order derivatives based on
the selection of derivative type in each step of differentiation. For the sake of
convenience, we concentrate on the second-order case.

For a given fuzzy function f̃ , we have two possibilities to obtain the deriva-

tive of f̃ on x: D(1)
1 f(x), D(1)

2 f(x). Then for each of these two derivatives, we
have again two possibilities:

D(1)
1 (D(1)

1 f̃(x)), D(1)
2 (D(1)

1 f̃(x))

and
D(1)

1 (D(1)
2 f̃(x)), D(1)

2 (D(1)
2 f̃(x)),

respectively.

Definition 4 (See [17] ) Let f̃ : (a, b) −→ Rf and n,m = 1, 2. We say

that f̃ is [(n,m) − gH]−differentiable at x0 ∈ (a, b) if D(1)
n f̃(x) exists on a

neighborhood of x0 as a fuzzy function and it is [(m)− gH]−differentiable at

x0. The second derivatives of f̃ are denoted by D(2)
(n,m)f̃(x) for n,m = 1, 2.

Theorem 1 (See [17] ) Let D(1)
1 f̃ : (a, b) −→ Rf or D(1)

2 f̃ : (a, b) −→ Rf be
fuzzy functions,

(i) If D(1)
1 f̃ is [(1)−gH]−differentiable, then ḟ

r
and ḟ

r

are differentiable func-

tions and [D(2)
(1,1)f̃(x)]

r = [f̈
r
, f̈

r

] and we say that f̃ is [(1, 1)−gH]−differentiable
at x.

(ii) If D(1)
1 f̃ is [(2)−gH]−differentiable, then ḟ

r
and ḟ

r

are differentiable func-

tions and [D(2)
(1,2)f̃(x)]

r = [f̈
r

, f̈
r
] and we say that f̃ is [(1, 2)−gH]−differentiable

at x.
(iii) If D(1)

2 f̃ is [(1)−gH]−differentiable, then ḟ
r
and ḟ

r

are differentiable func-

tions and [D(2)
(2,1)f̃(x)]

r = [f̈
r

, f̈
r
] and we say f̃ is [(2, 1)−gH]−differentiable

at x.
(iv) If D(1)

2 f̃ is [(2)−gH]−differentiable, then ḟ
r
and ḟ

r

are differentiable func-

tions and [D(2)
(2,2)f̃(x)]

r = [f̈
r
, f̈

r

] and we say that f̃ is [(2, 2)−gH]−differentiable
at x.

If the fuzzy function f̃(x) is continuous, then its definite integral exists.
Furthermore,(∫ b

a

f̃(x)dx

)r

=

∫ b

a

fr(x)dx,

(∫ b

a

f̃(x)dx

)r

=

∫ b

a

f
r
(x)dx.

Definition 5 (Partial ordering) Let ã, b̃ ∈ Rf . We write ã ≼ b̃, if and only

if ar ≤ br and ar ≤ b
r
for all r ∈ [0, 1]. We also write ã ≺ b̃, if and only if{

ar < br

ar ≤ b
r or

{
ar ≤ br

ar < b
r or

{
ar < br

ar < b
r
.

(2)

Moreover, ã ≈ b̃ if and only if ã ≼ b̃ and ã ≽ b̃, that is, [ã]r = [b̃]r for all
r ∈ [0, 1].
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3 Embedding theorem

Now we are going to embed Rf into a Banach space isometrically and iso-
morphically. Let A ⊆ Rn and B ⊆ Rn. The Hausdorff metric is defined
by

dH(A,B) = max

{
sup
a∈A

inf
b∈B

||a− b||, sup
b∈B

inf
a∈A

||a− b||
}
.

According to [20], we define the metric df in Rf as

df (ã, b̃) = sup
0≤r≤1

dH([ã]r, [b̃]r).

For ã, b̃ ∈ Rf , we have

dH([ã]r, [b̃]r) = max
{
|ar − br|, |ar − b

r|
}
.

The space C[0, 1] is the set of all real–valued bounded functions f on [0, 1] such
that f is left-continuous for any x ∈ (0, 1] and right-continuous at 0 and f has
a right limit for any x ∈ [0, 1). Then (C[0, 1], ||.||) is a Banach space with the
norm defined by ||f || = supx∈[0,1] |f(x)|. Furthermore, (C[0, 1] × C[0, 1], ||.||)
is also a Banach space with the norm defined by

||(f, g)|| = max{||f ||, ||g||},

where (f, g) ∈ C[0, 1]× C[0, 1] (See [23]).
Let ã be a fuzzy number, i.e., ã ∈ Rf . We consider ar and ar, as the

functions of r ∈ [0, 1]. Then we can define the embedding function π : Rf −→
C[0, 1]×C[0, 1] by π(ã) = (ar, ar). The embedding theorem is presented below.

Theorem 2 (Embedding Theorem) (See [23] ) The function π : Rf −→
C[0, 1] × C[0, 1] is defined by π(ã) = (ar, ar). Then the following properties
hold true.

(i) πis injective.
(ii) π((s.ã) + (t.b̃)) = sπ(ã) + tπ(b̃) for all ã, b̃ ∈ Rf , s ≥ 0, t ≥ 0.

(iii)df (ã, b̃) = ||π(ã)− π(b̃)||,
for r ∈ [0, 1]. That is to say, Rf can be embedded into C[0, 1] × C[0, 1]

isometrically and isomorphically.

The above theorem says that each element in Rf can be regarded as an
element in C[0, 1]× C[0, 1].

Let f1, f2, g1 and g2 be real–valued functions defined on the same real
vector space V . We write, (f1, g1) ≤ (f2, g2) if and only if f1(x0) ≤ f2(x0) and
g1(x0) ≤ g2(x0) for any fixed x0 ∈ V. We also write (f1, g1) < (f2, g2) if and
only if{

f1(x0) < f2(x0)

g1(x0) ≤ g2(x0)
or

{
f1(x0) ≤ f2(x0)

g1(x0) < g2(x0)
or

{
f1(x0) < f2(x0)

g1(x0) < g2(x0).
(3)

Moreover we write (f1, g1) = (f2, g2) if and only if f1(x0) = f2(x0) and
g1(x0) = g2(x0).
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Lemma 1 (Order Preserving) Let ã, b̃ ∈ Rf and π be the embedding func-

tion defined in Theorem 2 then ã ≼ b̃ if and only if π(ã) ≤ π(b̃). We also have
ã ≺ b̃ if and only if π(ã) < π(b̃). Moreover ã ≈ b̃ if and only if π(ã) = π(b̃).

Proof. From Definition 5, we see that ã ≼ b̃ if and only if ar ≤ br and ar ≤ b
r
.

Then π(ã) = (ar, ar) ≤ π(b̃) = (br, b
r
) for r ∈ [0, 1]. Similarly, from expressions

(2) and (3), we see that ã ≺ b̃ if and only if π(ã) < π(b̃). Since ã ≈ b̃ if and
only if [ar, ar] = [br, b

r
], we see that ã ≈ b̃ if and only if π(ã) = π(b̃).

4 Optimality for fuzzy isoperimetric problem

The problem involving minimization of a functional while giving a integral
constraints is called the isoperimetric problem. Let y ∈ C4[a, b], where y =
(y1, ..., yn) and yk ∈ C4[a, b] for k = 1, ..., n, and ya, yb are given in Rn. Then
we consider the following classic isoperimetric problem:

J(y) =

∫ b

a

L(x,y(x), ẏ(x), ÿ(x))dx −→ min,∫ b

a

gi(x,y(x), ẏ(x), ÿ(x))dx = Ci, i = 1, ...,m,

y(a) = ya, y(b) = yb,

ẏ(a) = ẏa, ẏ(b) = ẏb.

(4)

Assume that gi has continuous partial derivatives of third order with respect
to all its arguments for i = 1, ...,m. The well–known Euler–lagrange equation
for problem (4) is stated as follows.

Theorem 3 (See [22] ) If y ∈ C4[a, b] is an extremal for problem (4), then
there exist constants λi for i = 1, ...,m, such that

∂F

∂yk
− d

dx

(
∂F

∂ẏk

)
+

d2

dx2

(
∂F

∂ÿk

)
= 0, k = 1, .., n,

for all x ∈ [a, b], where
F = L+Σm

i=1λigi.

Definition 6 We say that ỹ = ỹ(x) is admissible, if it satisfies the end–
conditions and yr, yr have continuous fourth order derivative. We denote the

set of all admissible curves by X̃ad.

Now we consider the following fuzzy isoperimetric problem:

J̃(ỹ) ≈
∫ b

a

L̃(x, ỹ(x), ˙̃y(x), ¨̃y(x))dx −→ min,

Ĩ(ỹ) ≈
∫ b

a

g̃(x, ỹ(x), ˙̃y(x), ¨̃y(x))dx ≈ C̃,

ỹ(a) ≈ ỹa, ỹ(b) ≈ ỹb,

˙̃y(a) ≈ ˙̃ya, ˙̃y(b) ≈ ˙̃yb,

(5)
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where C̃ ∈ Rf is a given fuzzy number and Lr and L
r
have continuous partial

derivatives of third order with respect to all its arguments.

We say that ỹ∗(x) is an optimal solution of problem (5), if ỹ∗(x) is an
admissible curve and there exists no admissible curve ỹ(x)(̸= ỹ∗(x)) of problem
(5) such that J̃(ỹ) ≺ J̃(ỹ∗).

Let π be the function defined in Theorem 2. Then we consider the following
optimization problem

π(J̃(ỹ)) = π

(∫ b

a

L̃(x, ỹ(x), ˙̃y(x), ¨̃y(x))dx

)
−→ min,

π(Ĩ(ỹ)) = π

(∫ b

a

g̃(x, ỹ(x), ˙̃y(x), ¨̃y(x))dx

)
= π(C̃),

π(ỹ(a)) = π(ỹa), π(ỹ(b)) = π(ỹb),

π( ˙̃y(a)) = π( ˙̃ya), π( ˙̃y(b)) = π( ˙̃yb).

(6)

To simplify the writing, we denote

([y]r(x)) = (x, yr(x), yr(x), ẏr(x), ẏ
r
(x), ÿr(x), ÿ

r
(x))

where r ∈ [0, 1]. From the embedding Theorem 2, we have

π(J̃(ỹ)) =
(
Jr(yr, yr), J

r
(yr, yr)

)
=

(∫ b

a

Lr([y]r(x))dx,

∫ b

a

L
r
([y]r(x))dx)

)
,

π(Ĩ(ỹ)) =
(
Ir(yr, yr), I

r
(yr, yr)

)
=

(∫ b

a

gr([y]r(x))dx,

∫ b

a

gr([y]r(x))dx

)
= (Cr, C

r
),

π(ỹ(a)) = π(ỹa) = (yr(a), yr(a)) = (yr
a
, yra),

π(ỹ(b)) = π(ỹb) = (yr(b), yr(b)) = (yr
b
, yrb),

π( ˙̃y(a)) = π( ˙̃ya) = (ẏr(a), ẏ
r
(a)) = (ẏr

a
, ẏ

r
a),

π( ˙̃y(b)) = π( ˙̃yb) = (ẏr(b), ẏ
r
(b)) = (ẏr

b
, ẏ

r
b).

(7)
We say that ỹ∗ is an optimal solution of problem (6) if there exists no ad-
missible curve ỹ(̸= ỹ∗) such that π(J̃(ỹ)) < π(J̃(ỹ∗)). In other words, ỹ∗ is a
solution of problem (6) if there exists no ỹ(̸= ỹ∗) such that{

Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) ≤ J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) ≤ Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r)
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for r ∈ [0, 1]. Inspired by Equation (7), we consider the following biobjective
variational problem

(
Jr(yr, yr), J

r
(yr, yr)

)
=

(∫ b

a

Lr([y]r(x)),

∫ b

a

L
r
([y]r(x))

)
→ min,

Ir(yr, yr) =

∫ b

a

gr([y]r(x)) = Cr,

I
r
(yr, yr) =

∫ b

a

gr([y]r(x)) = C
r
,

yr(a) = yr
a
, yr(a) = yra,

yr(b) = yr
b
, yr(b) = yrb ,

ẏr(a) = ẏr
a
, ẏ

r
(a) = ẏ

r
a,

ẏr(b) = ẏr
b
, ẏ

r
(b) = ẏ

r
b .

(8)

Definition 7 Let function (y∗r, y∗r) satisfies the conditions of problem (8).
(y∗r, y∗r) is called a Pareto optimal solution to problem (8) if does not exist
(yr, yr) for problem (8) with

∀i ∈ {1, 2} : J i(yr, yr) ≤ J i(y∗r, y∗r) ∩ ∃i ∈ {1, 2} : J i(yr, yr) < J i(y∗r, y∗r)

where J1 = Jr; J2 = J
r
and r ∈ [0, 1].

In other words, (y∗r, y∗r) is a Pareto optimal solution to problem (8) if
there exists no (yr, yr)(̸= (y∗r, y∗r)) such that{

Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) ≤ J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) ≤ Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r)

for r ∈ [0, 1].

For enhanced notions of Pareto optimality of constrained multiobjective
problems, the reader is referred to [2].

Lemma 2 Problems (5) and (6) have the identical feasible sets.

Proof. From Lemma 1,∫ b

a

g̃
(
x, ỹ(x), ˙̃y(x), ¨̃y(x)

)
dx ≈ C̃,

ỹ(a) ≈ ỹa, ỹ(b) ≈ ỹb,

˙̃y(a) ≈ ˙̃ya, ˙̃y(b) ≈ ˙̃yb,
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if and only if

π

(∫ b

a

g̃
(
x, ỹ(x), ˙̃y(x), ¨̃y(x)

)
dx

)
= π(C̃),

π(ỹ(a)) = π(ỹa), π(ỹ(b)) = π(ỹb),

π( ˙̃y(a)) = π( ˙̃ya), π( ˙̃y(b)) = π( ˙̃yb).

This completes the proof.

Lemma 3 ỹ∗ is an optimal solution of problem (5) if and only if ỹ∗ is an
optimal solution of problem (6).

Proof. From Lemma 1, J̃(ỹ) ≺ J̃(ỹ∗) if and only if π(J̃(ỹ)) < π(J̃(ỹ∗)) and
from Lemma 2, problems (5) and (6) have the identical feasible sets. This
completes the proof.

Lemma 4 If (y∗r, y∗r) is a Pareto optimal solution of the variational problem
(8) then ỹ∗ is an optimal solution of problem (6) where [ỹ∗]r = (y∗r, y∗r).

Proof. Since (y∗r, y∗r) is a feasible solution of problem (8), we have∫ b

a

gr([y∗]r(x))dx = Cr,

∫ b

a

gr([y∗]r(x))dx = C
r
,

y∗r(a) = y∗r
a
, y∗r(a) = y∗ra ,

y∗r(b) = y∗r
b
, y∗r(b) = y∗rb ,

ẏ∗r(a) = ẏ∗r
a
, ẏ

∗r
(a) = ẏ

∗r
a ,

ẏ∗r(b) = ẏ∗r
b
, ẏ

∗r
(b) = ẏ

∗r
b ,

From Eqs (7), ỹ∗ is a feasible solution of problem (6). Suppose that ỹ∗ is not an
optimal solution of problem (6). Then there exists a feasible solution ỹ( ̸= ỹ∗)
of problem (6) such that{

Jr(yr, yr) ≤ Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) ≤ J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r).

Therefore (y∗r, y∗r) is not a Pareto optimal solution of problem (8). which
contradicts the hypothesis. This completes the proof.

Theorem 4 If (y∗r, y∗r) is a Pareto optimal solution of the variational prob-
lem (8) then ỹ∗ is an optimal solution of fuzzy isoperimetric problem (5) where
[ỹ∗]r = (y∗r, y∗r).
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Proof. From the proof of Lemma 4, we see that ỹ∗ is a feasible solution of
problem (6). Now from Lemma 2, we also see that ỹ∗ is a feasible solution of
problem (5). Then the result follows from Lemma 3 and 4 immediately.

We obtain a sufficient condition for Pareto optimality by modifying the
biobjective problem (8) into the following weighting problem:

w

∫ b

a

Lr([y]r(x))dx+ (1− w)

∫ b

a

L
r
([y]r(x))dx −→ min,∫ b

a

gr([y]r(x))dx = Cr,∫ b

a

gr([y]r(x))dx = C
r
,

yr(a) = yr
a
, yr(a) = yra,

yr(b) = yr
b
, yr(b) = yrb ,

ẏr(a) = ẏr
a
, ẏ

r
(a) = ẏ

r
a,

ẏr(b) = ẏr
b
, ẏ

r
(b) = ẏ

r
b ,

(9)

where 0 ≤ r ≤ 1 and 0 ≤ w ≤ 1.
The extremal of problem (9) can be obtained from Theorem 3.

Theorem 5 The solution of the weighting problem (9) is Pareto optimal if the
weighting coefficient is positive, that is, w > 0. Moreover, the unique solution
of the weighting problem (9) is Pareto optimal.

Proof. Let (y∗r, y∗r) be an optimal solution to problem (9) with w > 0. Sup-
pose that (y∗r, y∗r) is not Pareto optimal. Then, there exists (yr, yr) such
that {

Jr(yr, yr) ≤ Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) ≤ J

r
(y∗r, y∗r)

or

{
Jr(yr, yr) < Jr(y∗r, y∗r)

J
r
(yr, yr) < J

r
(y∗r, y∗r).

Since w > 0 we have

(wJr + (1− w)J
r
)(yr, yr) < (wJr + (1− w)J

r
)(y∗r, y∗r).

This contradicts the minimality of (y∗r, y∗r). Now, let (y∗r, y∗r) be the unique
solution to (9). If (y∗r, y∗r) is not Pareto optimal, then

(wJr + (1− w)J
r
)(yr, yr) ≤ (wJr + (1− w)J

r
)(y∗r, y∗r).

This contradicts the uniqueness of (y∗r, y∗r).
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Therefore, by varying the weight over the 0 ≤ w ≤ 1 ones obtains, in
principle, different Pareto optimal solutions. The next theorem provides a
necessary condition for Pareto optimality.

Theorem 6 For a function (y∗r, y∗r) to be Pareto optimal to problem (8), it
is necessary to be a solution to the isoperimetric problems∫ b

a

Li([y]r(x))dx −→ min,∫ b

a

Lj([y]r(x))dx =

∫ b

a

Lj([y∗]r(x))dx,∫ b

a

gr([y]r(x))dx = Cr,∫ b

a

gr([y]r(x))dx = C
r
,

yr(a) = yr
a
, yr(a) = yra,

yr(b) = yr
b
, yr(b) = yrb ,

ẏr(a) = ẏr
a
, ẏ

r
(a) = ẏ

r
a,

ẏr(b) = ẏr
b
, ẏ

r
(b) = ẏ

r
b ,

for each i = 1, 2 and i ̸= j, where L1 = Lr, L2 = L
r
, and r ∈ [0, 1].

Proof. Suppose that (y∗r, y∗r) is Pareto optimal. We define

C1 = {(yr, yr) : Jr
(yr, yr) = J

r
(y∗r, y∗r)},

C2 = {(yr, yr) : Jr(yr, yr) = Jr(y∗r, y∗r)}.
Then (y∗r, y∗r) ∈ Ck, for k = 1, 2, so Ck ̸= ϕ. If (y∗r, y∗r) does not mini-
mize Jr(yr, yr) on the constrained set C1 and if (y∗r, y∗r) does not minimize

J
r
(yr, yr) on and C2, then there exists (yr, yr) such that{

Jr(yr, yr) < J
r
(y∗r, y∗r)

J
r
(yr, yr) = J

r
(y∗r, y∗r)

and

{
J
r
(yr, yr) < J

r
(y∗r, y∗r)

Jr(yr, yr) = Jr(y∗r, y∗r).

This contradicts the Pareto optimality of (y∗r, y∗r).

Example 1 (Example 7.1 of [11] ) Find the optimal solution for the following
fuzzy isoperimetric variational problem:

J̃(ỹ(x)) ≈
∫ 1

0

˙̃y2(x)dx −→ min,

Ĩ(ỹ(x)) ≈
∫ 1

0

ỹ(x)dx ≈< 0, 1, 3 >,

x̃(0) ≈ 2 ≈< 2, 2, 2 >, x̃(1) ≈ 4 ≈< 4, 4, 4 > .

(10)
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Solution. We assume that ỹ(x) is [(1) − gH]−differentiable function. In
order to obtain the optimal solution of problem (10), From Theorem 4, we
consider following biobjective variational problem(∫ 1

0

(ẏr(x))2dx,

∫ 1

0

(ẏr(x))2dx

)
−→ min,∫ 1

0

yr(x)dx = r,∫ 1

0

yr(x)dx = 3− 2r,

y(0) = 2, y(0) = 2,

y(1) = 4, y(1) = 4.

(11)

By Theorem 5, Pareto optimal solutions to problem (11) can be found by
considering the family of problems

w

∫ 1

0

(ẏr(x))2dx+ (1− w)

∫ 1

0

(ẏ
r
(x))2dx −→ min,∫ 1

0

yr(x)dx = r,∫ 1

0

yr(x)dx = 3− 2r,

y(0) = 2, y(0) = 2,

y(1) = 4, y(1) = 4,

(12)

where r ∈ [0, 1] and w ∈ [0, 1]. Let us now fix w. By Theorem 3, we have

F = w(ẏr(x))2 + (1− w)(ẏ
r
(x))2 + λ1y

r(x) + λ2y
r(x)

and solution to problem (12) satisfies the Euler-Lagrange equations

λ1 − 2ÿr.w = 0,

λ2 − 2ÿ
r
.(1− w) = 0.

Obviously, the latter differential equations are linear with constant coefficients,
for fixed w ∈ [0, 1] and r ∈ [0, 1]. We consider constants d1 and d2 such that
d1 = λ1

2w , d2 = λ2

2(1−w) and w ̸= 0, 1. Hence, by virtue of the classical differential

equation theory, we may solve it analytically for fixed w ∈ (0, 1) and r ∈ [0, 1]
to arrive at

y∗r(x) =
d1
2
x2 + k1x+ k2,

y∗r(x) =
d2
2
x2 + p1x+ p2.
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Constants of integration d1; d2; k1; k2; p1; p2 might be given by the endpoint
conditions as follows:

2 = yr(0) = k2, 2 = yr(0) = p2,

4 = yr(1) =
d1
2

+ k1 + k2,

4 = yr(1) =
d2
2

+ p1 + p2.

Therefore we arrive at

y∗r(x) =
d1
2
x2 +

(
4− d1

2

)
x+ 2,

y∗r(x) =
d2
2
x2 +

(
4− d2

2

)
x+ 2.

On the other hand,

r =

∫ 1

0

y∗r(x)dx =

∫ 1

0

(
d1
2
x2 +

(
4− d1

2

)
x+ 2

)
dx,

3− 2r =

∫ 1

0

y∗r(x)dx =

∫ 1

0

(
d2
2
x2 +

(
4− d2

2

)
x+ 2

)
dx,

which gives us

d1 = 36− 12r, d2 = 24r,

y∗r(x) = (18− 6r)x2 + (6r − 16)x+ 2, y∗r(x) = 12rx2 + (2− 12r)x+ 2.

One can easily show that y∗r(x) and y∗r(x) satisfy the Remark 1. Observe that
(y∗r, y∗r) satisfies the necessary Pareto optimality conditions (See Theorem 6).
Consider now the following isoperimetric problems:∫ 1

0

(ẏr(x))2dx −→ min,∫ 1

0

(ẏr(x))2dx =

∫ 1

0

(ẏ
∗r
(x))2dx,∫ 1

0

yr(x)dx = r,∫ 1

0

yr(x)dx = 3− 2r,

yr(0) = 2, yr(0) = 2,

yr(1) = 4, yr(1) = 4.

(13)
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and ∫ 1

0

(ẏr(x))2dx −→ min,∫ 1

0

(ẏr(x))2dx =

∫ 1

0

(ẏ∗r(x))2dx,∫ 1

0

yr(x)dx = r,∫ 1

0

yr(x)dx = 3− 2r,

yr(0) = 2, yr(0) = 2,

yr(1) = 4, yr(1) = 4.

(14)

where

y∗r(x) = (18− 6r)x2 + (6r − 16)x+ 2, y∗r(x) = 12rx2 + (2− 12r)x+ 2.

For the moment we consider only equation (13). The augmented function is

F = (ẏr(x))2 + λ1(ẏ
r
(x))2 + λ2(y

r(x)) + λ3(y
r(x)),

and the corresponding Euler–Lagrange equation gives

λ2 − 2(ÿr(x))2 = 0,

λ3 − 2λ1(ÿ
r
(x))2 = 0.

A solution to this equation is

λ1 ̸= 0, λ2 = 72− 24r, λ3 = 48rλ1,

yr(x) = y∗r(x) = (18− 6r)x2 + (6r − 16)x+ 2

and

yr(x) = y∗r(x) = 12rx2 + (2− 12r)x+ 2.

Following the same arguments, one can show that

yr(x) = y∗r(x) = (18− 6r)x2 + (6r − 16)x+ 2

and

yr(x) = y∗r(x) = 12rx2 + (2− 12r)x+ 2

is solution to (14). Therefore, by Theorem 6, [ỹ(x)]r = [ỹ∗(x)]r is a candidate
Pareto optimal solution to problem (11) and from Theorem 4, ỹ∗ is a candidate
optimal solution to problem (10) where [ỹ∗(x)]r = [(18− 6r)x2 +(6r− 16)x+
2, 12rx2+(2−12r)x+2]. This solution is shown in Figure 1, where the dashed
lines are the yr(x) and the doted lines are the yr(x) for some r ∈ [0, 1].
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Fig. 1 The fuzzy optimal solution of Example 1.

4.1 Optimality for fuzzy variational problems

First, we review the theorem in classical calculus of variation. The well–known
Euler–Lagrange equation for unconstraint variational problems is stated as
follows.

Theorem 7 (See [22]) Let J : C4[a, b] −→ R be a functional of the form,

J(y) =

∫ b

a

L(x,y(x), ẏ(x), ÿ(x))dx,

where L has continuous partial derivatives of third order with respect to all its
arguments. Let

S = {y ∈ C4[a, b] : y(a) = ya,y(b) = yb, ẏ(a) = ẏa, ẏ(b) = ẏb},

such that for y = (y1, ..., yn), we have yk ∈ C4[a, b] for k = 1, ..., n, and ya,
yb, ẏa, ẏb are given in Rn. If y ∈ S is an extremal for J , then

∂L

∂yk
− d

dx

(
∂L

∂ẏk

)
+

d2

dx2

(
∂L

∂ÿk

)
= 0, k = 1, ..., n, (15)

for all x ∈ [a, b].

Now we consider the following fuzzy variational problem:

J̃(ỹ) ≈
∫ b

a

L̃(x, ỹ(x), ˙̃y(x), ¨̃y(x))dx −→ min,

ỹ(a) ≈ ỹa, ỹ(b) ≈ ỹb,

˙̃y(a) ≈ ˙̃ya, ˙̃y(b) ≈ ˙̃yb,

(16)
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where Lr and L
r
have continuous partial derivatives of third order with respect

to all its arguments.

We say that ỹ∗ is a solution of problem (16) if there exists no admissible
curve ỹ(̸= ỹ∗) such that J̃(ỹ) ≺ J̃(ỹ∗).

From the embedding Theorem 2, finally we consider the following varia-
tional problem (

Jr(yr, yr), J
r
(yr, yr)

)
→ min,

yr(a) = yr
a
, yr(a) = yra,

yr(b) = yr
b
, yr(b) = yrb ,

ẏr(a) = ẏr
a
, ẏ

r
(a) = ẏ

r
a,

ẏr(b) = ẏr
b
, ẏ

r
(b) = ẏ

r
b .

(17)

The fuzzy variational problem (16) is a special case of fuzzy isoperimetric
problem (5). The proof of the following theorems are omitted as they are
similar to those of Theorems 4 – 6.

Theorem 8 If (y∗r, y∗r) is a Pareto optimal solution of the variational prob-
lem (17) then ỹ∗ is an optimal solution of fuzzy variational problem (16) where
[ỹ∗]r = (y∗r, y∗r).

We obtain a sufficient condition for Pareto optimality by modifying the
variational problem (17) into the following weighting problem:

w

∫ b

a

Lr([y]r(x))dx+ (1− w)

∫ b

a

L
r
([y]r(x))dx → min,

yr(a) = yr
a
, yr(a) = yra,

yr(b) = yr
b
, yr(b) = yrb ,

ẏr(a) = ẏr
a
, ẏ

r
(a) = ẏ

r
a,

ẏr(b) = ẏr
b
, ẏ

r
(b) = ẏ

r
b ,

(18)

where 0 ≤ w ≤ 1.

The extremal of problem (18) can be obtained from (15).

Theorem 9 The solution of the weighting problem (18) is Pareto optimal
if the weighting coefficient is positive, that is, w > 0. Moreover, the unique
solution of the weighting problem (18) is Pareto optimal.
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Theorem 10 For a function (y∗r, y∗r) to be Pareto optimal to problem (17),
it is necessary to be a solution to the isoperimetric problems∫ b

a

Li([y]r(x))dx −→ min,∫ b

a

Lj([y]r(x))dx =

∫ b

a

Lj([y∗]r(x))dx, j = 1, 2, j ̸= i,

yr(a) = yr
a
, yr(a) = yra,

yr(b) = yr
b
, yr(b) = yrb ,

ẏr(a) = ẏr
a
, ẏ

r
(a) = ẏ

r
a,

ẏr(b) = ẏr
b
, ẏ

r
(b) = ẏ

r
b ,

where L1 = Lr, L2 = L
r
, for each i = 1, 2 and r ∈ [0, 1].

Example 2 Find the optimal solution for the following fuzzy variational prob-
lem:

J̃(ỹ(x)) ≈
∫ 1

0

−2.ỹ(x) + (¨̃y(x))2dx −→ min,

ỹ(0) ≈ ˙̃y(0) ≈< −1, 0, 1 >,

ỹ(1) ≈ ˙̃y(1) ≈< 0, 1, 2 > .

(19)

Solution. First, we assume that ỹ(x) is [(1, 1)−gH]-differentiable (or [(2, 2)−
gH]-differentiable) function. From Theorem 8, we cosider following biobjective
variational problem(∫ 1

0

−2.yr(x) + (ÿr(x))2dx,

∫ 1

0

−2.yr(x) + (ÿ
r
(x))2dx

)
−→ min,

yr(0) = ẏr(0) = r − 1, yr(0) = ẏ
r
(0) = 1− r,

yr(1) = ẏr(1) = r, yr(1) = ẏ
r
(1) = 2− r.

(20)

We need to solve the following weighting variational problem

w

∫ 1

0

−2.yr(x) + (ÿr(x))2dx+ (1− w)

∫ 1

0

−2.yr(x) + (ÿ
r
(x))2dx −→ min,

yr(0) = ẏr(0) = r − 1, yr(0) = ẏ
r
(0) = 1− r,

yr(1) = ẏr(1) = r, yr(1) = ẏ
r
(1) = 2− r.

(21)
From Theorem 7, Euler–Lagrange equation gives

d2

dx2
(ÿr(x))) =

1− w

w
,

d2

dx2
(ÿ

r
(x))) =

w

1− w
.

Let us now fix w = 1
2 , from initial conditions, we arrive at

y∗r(x) =
1

4!
x4 + (2r − 37

12
)x3 + (−3r +

121

24
)x2 + (r − 1)x+ r − 1,
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y∗r(x) =
1

4!
x4 + (−2r +

11

12
)x3 + (3r − 23

24
)x2 + (1− r)x+ 1− r.

One can check the conditions of Remark 1 are satisfied so ỹ∗(x) is fuzzy func-
tion. If we assume that w = 1

3 then

y∗r(x) =
1

12
x4 + (2r − 19

6
)x3 + (−3r +

61

12
)x2 + (r − 1)x+ r − 1,

y∗r(x) =
1

48
x4 + (−2r +

23

24
)x3 + (3r − 47

48
)x2 + (1− r)x+ 1− r.

These solutions are shown in Figure 2 and Figure 3 for w = 1
2 and w = 1

3
respectively, where the dashed lines are the yr(x) and the doted lines are the
yr(x) for some r ∈ [0, 1]. Now we assume that ỹ(x) is [(1, 2)−gH]-differentiable
([(2, 1) − gH]-differentiable) function. We cosider following biobjective varia-
tional problem(∫ 1

0

−2.yr + (ÿ
r
(x))2dx,

∫ 1

0

−2.yr + (ÿr(x))2dx

)
−→ min,

yr(0) = ẏr(0) = r − 1, yr(0) = ẏ
r
(0) = 1− r,

yr(1) = ẏr(1) = r, yr(1) = ẏ
r
(1) = 2− r.

(22)

We need to solve the following weighting variational problem

w

∫ 1

0

−2.yr + (ÿ
r
(x))2dx+ (1− w)

∫ 1

0

−2.yr + (ÿr(x))2dx −→ min,

yr(0) = ẏr(0) = r − 1, yr(0) = ẏ
r
(0) = 1− r,

yr(1) = ẏr(1) = r, yr(1) = ẏ
r
(1) = 2− r.

(23)

From Theorem 7, Euler–Lagrange equation gives

w(−2 +
d2

dx2
(2ÿ

r
(x))) = 0, (1− w)(−2 +

d2

dx2
(2ÿr(x))) = 0.

Let us now fix w ̸= 0, 1, so we have

−2 + 2.(yr(x))(4) = 0, −2 + 2.(yr(x))(4) = 0,

from initial conditions, we arrive at

y∗r(x) =
1

4!
x4 + (2r − 37

12
)x3 + (−3r +

121

24
)x2 + (r − 1)x+ r − 1,

y∗r(x) =
1

4!
x4 + (−2r +

11

12
)x3 + (3r − 23

24
)x2 + (1− r)x+ 1− r.

This solution is shown in Figure.2. Similar to Example 1, observe that (y∗r(x), y∗r(x))
satisfies the necessary Pareto optimality conditions (See Theorem 10).
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Fig. 2 The fuzzy optimal solution of Example 2 for w = 1
2
.
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Fig. 3 The fuzzy optimal solution of Example 2 for w = 1
3
.

5 Conclusion

We proposed new concept of optimal solution for fuzzy variational problems.
The main features of our optimality conditions were summarized and high-
lighted with two illustrative examples. As future work, we intend to derive
optimal solutions for fuzzy optimal control problems.
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