Global Analysis and Discrete Mathematics
Volume 2, Issue 2, pp. 103—114
ISSN: 2476-5341

A Method for Solving Optimal Control Problems Using
Genetic Programming

Ali Akbar Bani* - Maliheh Darbani

Received: 28 November 2016 / Accepted: 1 June 2017

Abstract This paper deals with a novel method for solving optimal control
problems based on genetic programming. This approach produces some trial
solutions and seeks the best of them. If the solution cannot be expressed in
a closed analytical form then our method produces an approximation with a
controlled level of accuracy. Using numerical examples, we will demonstrate
how to use the results.

Keywords Genetic programming - Optimal control problems - Grammatical
evolution

Mathematics Subject Classification (2010) 49J15

1 Introduction

Solving the issues regarding optimal control is of special complexities. Thus,
offering an appropriate and efficient method to solve these issues is of great sig-
nificance. In this regard, many methods have been suggested so for. However,
we offer a new method for solving OCP, which is based on genetic program-
ming.

The GP system is a series of successive operations which choose, the best from

*Corresponding author

Ali Akbar Bani

Department of Mathematics, Gomishan Center, Gorgan Branch, Islamic Azad University,
Gomishan, Iran.

E-mail: bani_ali@yahoo.com

Maliheh Darbani
Department of Mathematics, Gomishan Center, Gorgan Branch, Islamic Azad University,
Gomishan, Iran.

© 2017 Damghan University. All rights reserved. http://gadm.du.ac.ir/

104 Ali Akbar Bani, Maliheh Darbani

the candidate ’s numerous answers. To create a variety of answers, such ge-
netic agents as crossover or mutation are used. In this method, the proposed
answers of close form are not predetermined, but they are made through a
dynamic process which are sometimes very complex.

We use the Grammatical evolution for production because it can generate
the programs in the desired language, then some genetic operators such as
crossover and mutation are applied to new products. The production process
is implemented by a grammar expressed in Backus Naur Form. This paper is
organized as follows: in section 2 we give a brief presentation of grammatical
evolution, in section 3 we describe in detail this algorithm, in sections 4 and 5
we present our examples and experimental results and in section 6 we present
our conclusion.

2 Grammatical evolution

Grammatical evolution is an evolutionary automatic programming process
that can generate programs in a desired language. The process needs the BNF
grammar for production rule. It deals vectors of integers that called chromo-
somes. Fach integer in chromosome indicates a production rule from BNF
grammar. GE starts from the first symbol and the program string is then
gradually generated by the placement of non-terminal symbols with the right
hand of the selected production rule. Algorithm has the following steps:

get an element from the chromosome (with value R)
select the rule according to the scheme

Rule = R mod SC

Where SC is the number of rules for the specific non-terminal symbol.The
process of replacing non-terminal symbols with the right hand of production
rules is continued until either a full program has been generated or the end
of chromosome has been reached. In the latter case we can reject the entire
chromosome or we can start over (wrapping event) from the first element of
the chromosome. In our approach we allow at most two wrapping events to
occur.

In Fig.1 is given a small piece of the C programming language grammar.
The numbers in parentheses denote the sequence number of the corresponding
production rule to be used in the selection procedure described above.

The symbol S in the grammar denotes the start symbol of the grammar.
For example, suppose we have the chromosome z = [2,6,0,4,8,9,16,1, 3,1].
In Table. 1 we show how a valid function is produced from ¢. The resulting
function in the above example is f(t) = 2t> + t. Further details about gram-
matical evolution can be found in ([7],[8],[9],[10]).

Genetic Programming and Optimal Control Problems 105

Fig.1 The grammar of the proposed method

s =< expr > (0)

expr ::=< expr >< op >< expr > (0)
|(< expr >) (1)
[func(< expr >) (2)
| < digit > (3)
|t (4)
|u (5)
|2 (6)
< op >u= (0)
| - (1)
| * (2)
|/ (3)
< func >u=t+ (0)
|t- (1)
6% (2)
[t/ (3)
< digit >::=0 (0)
1 (1)
|2 (2)
3 (3)
4 (4)
|5 (5)
|6 (6)
7 (7)
8 (8)
|9 (9)

3 Description of the algorithm

We have two algorithms. One of them search for finding analytical solution
and another search for detecting numerical solution. Note proposed algorithm
is established for polynomials. Solve a given optimal control problem has the
following phases:

1. Initialization.
2. Fitness evaluation.

106 Ali Akbar Bani, Maliheh Darbani

Table 1 Example of program construction.

String Choromosome Operation
<expr> 2,6,0,4,8,9,16,1,3,1 2 mod 7=2
fun(<expr>) 6,0,4,8,9,16,1,3,1 6 mod 4=2
t*(<expr>) 0,4,8,9,16,1,3,1 0 mod 7=0
t*(<expr>,<op>,<expr>) 4,89,16,1,3,1 4 mod 7=4
t*(t,<op>,<expr>) 8,9,16,1,3,1 8 mod 4=2
t*(t+<expr>) 9,16,1,3,1 9 mod 7=2
t*(t+<func>(<expr>)) 16,1,3,1 16 mod 4=0
t*(t+t+(<expr>)) 1,3,1 1 mod 7=1
t*(t+t+(<expr>)) 3,1 3 mod 7=3
t*(t4-t+(<digit>)) 1 1 mod 10=1
t*(t+t+1) 1 1 mod 10=1

3. Genetic operations.
4. Termination control.

3.1 Initialization

At this stage, some values are given to crossover rate and mutation rate. Based
on the values, a fraction of chromosome are subject to changes specific to
mutation and crossover and then go to the next generation.

3.2 Fitness evaluation

Our optimal control problem (OCP) is expressed in the following form
minimize
ty

I(x(t),ut)) = [folt,z(t),u(t)) (1)

0

subject to the first-order dynamic constraints

&= g(t,2(t), u(t)) (2)

z(0) = zo ; z(ty) =y (3)

where x(t) is the trajectory, u(t) is the control, t is the independent variable,
ty is the terminal time.

As noted we provide two algorithms for solving this problem. The first algo-
rithm searches an analytical solution and the second seeks a numerical solution
for OCP.

Genetic Programming and Optimal Control Problems 107

3.2.1 First algorithm

Our main goal is to find a control function u(.) and a state function z(.) so
that the conditions of (2)-(3) are met and (1) is minimised. The steps for the
fitness evaluation of the chromosome i are the following:

a) Construct the models @;(t) and #;(t) corresponding whatever is expressed
in last section, so that the differential equation is true

2i(t) = g(t, &(t), 4 (1))

b) Calculate the quantity
By = M(&i(tg) — x5)” + (2i(to) — x0)?)

where A is a positive number.

¢) Calculate the quantity

ty
L= [Galt. a0 a(0))?
0
d) Finally, the fitness of the chromosome i is given by:

Fi=E +1
3.2.2 second algorithm

In this case as before we find a control function w(.) such that the correspond-
ing state z(.) satisfying (2)-(3) and minimize (1). To do this first, we split
the interval [0,¢f] to N subinterval [¢t;—1,¢;] , ¢ =1,2,..., N. Since we mind
to find an approximate optimal control for problem (1)-(2), we focus on find-
ing an optimal control function u(.) for the problem by genetic programming.
If u(t) be a control function then by a numerical method as Euler method
or Rung-kutta, we can discover trajectory corresponding u(t) from (2) with
initial condition x(0) = z¢. The steps for the fitness evaluation of the chromo-
some 7 are the following:

a) Construct the model 4;(t) as before.

b)Solve the differential equation
&i(t) = g(t, (1), i(t))

by a numerical method as Euler method or Rung-kutta.

c¢) Calculate the quantity

Ei = M(&i(ty) —) + (&:(to) — 20)?)

108 Ali Akbar Bani, Maliheh Darbani

where A is a positive number.

d) Calculate the quantity

I = /Otf(fo(f»fi(t)vﬁi(t)))z
by a numerical method as Trapezoidal method or Simpson.
e) Finally, the fitness of the chromosome i is given by:
F,=E+1

We will run the referred process on each of the two algorithms to all individuals
in the population and we arrange them in descending order according to their
fitness value. Accordingly, we apply the genetic operators on people and the
new generation create. This procedure repeat until the termination criteria
occur.

3.3 Genetic operations

The genetic operations used are crossover and the mutation. The crossover al-
low new individuals to be created.The individuals participating in the crossover
operation are selected proportionate to fitness and via tournament selection
i.e. the individual with the best fitness in the group is selected the others are
disearded.

The crossover operation produces two offspring . The two offspring is usually
different from their two parents and different from each other. In that opration
for each couple of new chromosomes two parents are selected ,we cut these
parent-chromosomes at a randomly chosen point and we exchange the right-
hand-side sub-chromosome [6].

The next genetic operator used is the mutation. Mutation is used very
sparingly in work. The mutation operation in an asexual operation in that it
operates on only one individual. It begins by randomly selecting a string from
population and then randomly selecting a number between 1 and L (length
of string) as the mutation point. Then the single character at the selected
mutation point is changed.

3.4 Termination control

The genetic operators are used to produce new generations until either a chro-
mosome is found in the population with the best fitness or the maximum
number of frequency happens for producing new generation.

Genetic Programming and Optimal Control Problems 109

4 Examples

We define an error function as e(ty) = &(ty) — x5 on [0,t¢], where Z(t;) and
x¢ are the exact and the approximate solution obtained from each repetition
GP for the example, respectively. In recent two examples we apply the first
algorithm to obtain approximate solutions of some OCP.

4.1 Example

Consider the following optimal control problem [2] which is minimization of
the functional

1
I(z,u) = /0 (z(t)? + u(t)?)dt
subject to : & = u(t)

z(0) =1 , x(1) = 0.6481
After solving with proposed method, we obtain the following results:

X 1055 . 1055
u(t):—mt2+2t—l , x(t):—mt3+t2—t+1

The final value z(1) = 0.6483, the optimal value I* = 0.7695 and the error
function e(1) = 2.0000 x 10~%. The exact objective value is I(x,u) = 0.7616.

The obtained approximate and exact optimal control and trajectory have been
shown in Fig 2.

X{exact) & X(approximate) functions
T T T

095 z -

Figure 2. Comparison between the exact and approximate results of X(t).

110 Ali Akbar Bani, Maliheh Darbani

4.2 Example

In this example a system of optimal control problem is considered [5] as follows:

I(x,u):/o u(t)?dt

subject to : = y(t),

Initial and final conditions are:
w0)=0 , y0)=0

z(1) =0.1 , y(1) =0.3
After solving with proposed method, we obtain the following results:

~ 6 2 ~ 12 6 3 - 13 6 4
t)=t——t)=t — -t)= t3 — —t
at) 10) =5t -5 B0 =gt - 55

The final amounts and errors will be as follows :

(1) = 0.3000 : e, (1) = 0.000

#(1) = 0.1167 , ex(1) =83 x 1072

The obtained objective value is I* = 0.1053 . The obtained approximate and
exact optimal control and trajectory have been shown in Fig 3.

(approximate) & X(approximate)
035 T T

03

Figure 3. The approximate Y(t) and X(t) functions.

In following two examples we apply the second algorithm to obtain approx-
imate solutions of some OCP.

Genetic Programming and Optimal Control Problems 111

4.3 Example

Consider the following optimal control problem [4] which is minimization of
the functional

I(x,u):/o u(t)?dt

subject to : &= 2 (t) + u(t)
x2(0) =0 , (1) =0.5
After solving with second method, we obtain the following results:
3116
a(t) = mt‘* —t2—t #(1) = 0.5007 e(1) = 7.000 x 10~*

The obtained objective value is I* = 0.1053 . The obtained approximate and
exact optimal control and trajectory have been shown in Fig 4.

trajectory function

trajectary function

Figure 4. The approximate trajectory function.

4.4 Example

Consider the following OCP which is minimization of the functional

I(:c,u):/o u(t)?dt

1
subject to : T = §x2(t)sin(x(t)) + u(t)
z(0)=0 , z(1) =0.5
After solving with second method, we obtain the following results:

i) = — 4003
3002.532
The obtained objective value is I* = 0.3555 . The obtained approximate and
exact optimal control and trajectory have been shown in Fig 5.

2, 2(1)=0.5000 e(1) = 0.000

112 Ali Akbar Bani, Maliheh Darbani

trajectory function
0s T T T

05F q

trajectory function

4 L L L L L L L L
0 0.1 n2 03 04 06 0B 07 08 08 1

1

Figure 5. The approximate trajectory function.

5 Experimental results

For the first algorithm, each chromosome is split uniformly in 2 parts. Each
part of the chromosome represents the solution of the corresponding for control
function and trajectory function. We applied 80% for the crossover rate and
5% for mutation rate. We investigated the matter of these two parameters by
performance some experiments. Each experiment was run 25 times. The pop-
ulation size was set to 1000 and the length of each chromosome to 40 . The
size of the population is a serious parameter. A size of subminiature weakens
the method’s effectiveness. A whacking size presents the method slowly. So
the choice of population size is a critical task. We have done a lot of testing
and found that values in the interval [500, 2000] are proper. The length of the
chromosomes usually depends on the problem to be solved. In these experi-
ments the maximum number of generations allowed was set to 500 and the
preset fitness target for the termination criteria was 107°. In table 2 we list
the results of the proposed method for the above examples. Under deadings
MIN, MAX, AVG we list the minimum, maximum and average of generations
in the set of 25 experiments.

Table 2. Results of Method for Examples.

OCP MIN MAX AVG
Exam4.1 28 290 150
FExam4.2 25 300 175
FExrxam4.3 32 260 148
FExam4.4 15 275 136

In Fig. 6 we plot the proposed solutions of the example 1.

Genetic Programming and Optimal Control Problems

113

A(exact) & Xfapproximate)

085 -4

ns

0.85

0.s

075

nr7

0.65

Figure 6. Candidate solutions of example 1.

6 Conclusion

*

Hlapproximate)
Hlexact)

0.1

We expressed a novel scheme based on genetic programming for solving OCP.
Producing analytical solutions are the approximate or even the exact solutions
is the advantage of the proposed method. Furthermore, if the exact solution
could not be represented in a closed analytical form, the proposed method

produced an approximation with a controlled level of accuracy.

References

1. A. Brabazon, M.O. Neill, A grammar model for foreign-exchange trading, in Proceedings
of the International conference on Artificial Intelligence, volume II, H. R. Arabnia et al.

(eds.), CSREA Press, 492-498, 23-26 June (2003).

2. DN. Burghes, A. Graham, Introduction to Control Theory, Including Optimal Control,

E. Horwood, Halsted Press, New Yourk (1980).

3. J.J. Collins, C. Ryan, Automatic generation of robot behaviors using grammatical evo-
lution, in Proc. of AROB 2000, the Fifth International Symposium on Artificial Life and

Robotics (2000).

4. O.S. Fard and A.H. Borzabadi, Optimal control problem, quasi-assignment problem and

genetic algorithm, Proc. World. Acad. Sci. Eng. Tech., 21, 70-73 (2007).

5. M. Keyanpour, M. Azizsefat, Numerical solution of optimal control problems by an iter-

ative scheme, Advanced Modeling and Optimization, 13(1), 25-37 (2011).

6. J.R. Koza, Genetic Programming: On the Programming of Computer by Means of Nat-

ural Selection, MIT Press, Cambridge, MA (1992).

7. M.O. Neill, Automatic Programming in an Arbitrary Language: Evolving Programs with
Grammatical Evolution, PhD Thesis, University Of Limerick, Ireland, August (2001).

8. M.O. Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in
a Arbitrary Language, Volume 4 of Genetic programming, Kluwer Academic Publishers

(2003).

9. M.O. Neill, C. Ryan, Grammatical evolution, IEEE Trans. Evolutionary Computation,

5, 349-358 (2001).

114 Ali Akbar Bani, Maliheh Darbani

10. C. Ryan, J.J. Collins, and M.O. Neill, Evolving programs for an arbitrary language, in
Proceedings of the First European Workshop on Genetic Programming, volume 1391 of
LNCS, W. Banzhaf, Ri. Poli, M. Schoenauer and T.C. Fogarty, (eds.), Springer-Verlag,
83-95, Paris, 14-15 April (1998).

11. M.O. Neill, J.J. Collins, and C. Ryan, Automatic generation of caching algorithms, in
Evolutionary Algorithms in Engineering and Computer Science, Kaisa Miettinen, Marko
M. Mkel, Pekka Neittaanmki, and Jacques Periaux (eds.), 127-134, Jyvskyl, Finland, 30
May-3 June (1999).

12. C. Ryan, M.O. Neill, and J.J. Collins, Grammatical evolution: Solving trigonometric
identities, in Proceedings of Mendel 1998: 4th International Mendel Conference on Ge-
netic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks, Rough Sets.,
Technical University of Brno, Faculty of Mechanical Engineering, 111-119, Brno, Czech
Republic, June 24-26 (1998).

13. I.G. Tsoulos, I.LE. Lagaris, Solving differential equations with genetic programming,
Genetic Programming and Evolvable Machines, 7(1), 33-54 (2006).

