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Abstract In this paper, we study a new operational numerical method for
hybrid fuzzy fractional differential equations by using of the hybrid functions
under generalized Caputo- type fuzzy fractional derivative. Solving two exam-
ples of hybrid fuzzy fractional differential equations illustrate the method.
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1 Introduction

The fractional calculus is a field of science that involves both integrals and
derivatives of any arbitrary order. Dynamical systems can be efficiently char-
acterized by fractional differential equations. In the recent years, fractional
differential equations have attracted a considerable interest due to their nu-
merous appearance in various fields and their more accurate models of systems
by considering fractional derivative. Thus it is very momentous to find efficient
methods for solving fractional differential equations.
The hybrid fuzzy differential equations (HFDEs) is a natural way to model dy-
namic systems with embedded uncertainty. Therefore, they have a wide range
of applications in science and engineering.
This work is devoted to studying the hybrid fuzzy fractional differential equa-
tions. So far, some researcher have used various numerical for solve the hybrid
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fuzzy fractional differential equations [10,12]. However, our method is a oper-
ational method based on hybrid of block-pulse functions and the second kind
Chebyshev polynomials will be presented.
The paper is organized as follows. Behind preliminaries, Section is devoted to
definitions of fuzzy Riemann-Liouville integral and fuzzy Caputo derivative.
After this section, we will study the hybrid fuzzy fractional differential equa-
tions using the concept of fuzzy generalized Caputo differentiability. The next
section, we briefly describe the hybrid functions method. In the last section
we present two numerical examples to illustrate the method.

2 Preliminaries

Definition 1 A fuzzy number u is a fuzzy subset of the real line with a normal,
convex and upper semicontinuous membership function of bounded support.
The family of fuzzy numbers will be denoted by RF . An arbitrary fuzzy number
is represented by an ordered pair of functions (u(r), u(r)), 0 6 r 6 1 that,
satisfies the following requirements:

- u(r) is a bounded left continuous nondecreasing function over [0, 1], with
respect to any r.

- u(r) is a bounded left continuous nonincreasing function over [0, 1], with
respect to any r.

- u(r) 6 u(r), 0 6 r 6 1.

then, the r-level set [v]r = {s|v(s) ≥ 0} is a closed bounded interval, denoted
[v]r = [vr, vr].

Definition 2 A triangular fuzzy number is a fuzzy set u in RF that is char-
acterized by an ordered triple (ul, uc, ur) ∈ R3 with ul 6 uc 6 ur such that
[u]0 = [ul;ur] and [u]1 = {uc}.

The r-level set of a triangular fuzzy number u is given by

[u]r = [uc − (1− r)(uc − ul), uc + (1− r)(ur − uc)

for any r ∈ I = [0, 1]

Definition 3 Let A,B two nonempty bounded subset of R. The Hausdorff
distance between A and B is

dH(A,B) = max[sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|].

The supremum metric D on RF is as follows:

D(u, v) = sup{dH([u]r, [v]r), r ∈ I}.

With the supremum metric, the space (RF , D) is a complete metric space.

Definition 4 Let u, v ∈ RF . If there exists w ∈ RF such that u = v+w, then
w is called the H-difference of u and v, and it is denoted by u⊖ v.
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Definition 5 The generalized Hukuhara difference of two fuzzy number u, v ∈
RF (gH- difference for short) is w ∈ RF , that defined as follows

u⊖gH v = w ↔
{
(i) u = v + w,
(ii) v = u+ (−1)w.

Definition 6 The generalized Hukuhara derivative of a fuzzy-valued function
f : (a, b) → RF at x0 is defined as

(f)′gH(x0) = lim
h→0

f(x0 + h)⊖gH f(x0)

h

If (f)′gH(x0) ∈ RF , we say that f is generalized Hukuhara differentiable at x0,
Also, we say that f is [(i)− gH]− differentiable at x0 if

(i) (f)′gH(x0; r) = [(f)′(x0; r), (f)
′(x0; r)], 0 ≤ r ≤ 1

and that f is [(ii)− gH]−differentiable at x0 if

(ii) (f)′gH(x0; r) = [(f)′(x0; r), (f)
′(x0; r)], 0 ≤ r ≤ 1

Definition 7 Consider f : [a, b] → R, fractional derivative of f(t) in the
Caputo sense is defined as

(Dα
∗ f)(x) =

q

Γ (m− α)

∫ x

a

(x−t)(m−α−1)f (m)(t)dt m−1 < α ≤ m,m ∈ N, x > a

(1)

3 Fuzzy Riemann-Liouville integral and fuzzy Caputo derivative

Definition 8 Let f : [a, b] → RF ; the fuzzy Riemann-Liouville integral of
fuzzy-valued function f is denoted as follows:

(Jα
a f)(x) =

1

Γ (α)

∫ x

a

f(t)

(x− t)1−α
dt

for a ≤ x, 0 ≤ α ≤ 1. For α = 1, we set J1
a = I, the identity operator.

Let us denote CF [a, b] as the space of all continuous fuzzy valued functions
on interval [a, b]. Also, we denote the space of all Lebesque integrable fuzzy-
valued functions on interval [a, b] ⊂ R by LF [a, b].

Definition 9 Let f
(m)
gH ∈ CF [a, b]∩LF [a, b]. The fuzzy gH-fractional Caputo

differentiability of fuzzy valued function f (CF [gH]−differentiability for short)
is defined as following:

(gHDα
∗ f)(x) = Jm−α

a (f
(m)
gH (x)) =

1

m− α

∫ t

a

(x− t)m−α−1(f
(m)
gH )(t)dt, (2)

where m− 1 < α ≤ m, m ∈ N, x > a.
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Theorem 1 Let f ′
gH ∈ CF [a, b]∩LF [a, b], and f(x; r) = [f(x; r), f(x; r)] for

0 ≤ r ≤ 1, x ∈ [a, b]. Let f(x; r) and f(x; r) are Caputo differentiable functions

then the function f is CF [gH]−differentiable. Furthermore

(gHDα
∗ f)(x; r) = [min{(Dα

∗ f)(x; r), (D
α
∗ f)(x; r)},max{(Dα

∗ f)(x; r), (D
α
∗ f)(x; r)}]

(3)
where (Dα

∗ f)(x; r) and (Dα
∗ f)(x; r) defined in Definition 7.

Definition 10 Let f : [a, b] → RF be CF [gH]−differentiable at x0 ∈ (a, b).
We say that f is CF [(i)− gH]−differentiable at x0 if

(gHDα
∗ f)(x0; r) = [(Dα

∗ f)(x0; r), (D
α
∗ f)(x0; r)], 0 ≤ r ≤ 1 (4)

and that f is CF [(ii)− gH]−differentiable at x0 if

(gHDα
∗ f)(x0; r) = [(Dα

∗ f)(x0, r), (D
α
∗ f)(x0; r)], 0 ≤ r ≤ 1 (5)

where

(Dα
∗ f)(x0; r) =

1

Γ (1− α)

∫ x

a

(f ′)(t; r)

(x− t)α
dt, (6)

(Dα
∗ f)(x0; r) =

1

Γ (1− α)

∫ x

a

(f
′
)(t; r)

(x− t)α
dt. (7)

Theorem 2 Let f : [a, b] → RF be a fuzzy-valued function on [a, b].

(a) If f is [(i)-gH]-differentiable at x0 ∈ [a, b] then f is CF [(i)− gH]−differentiable
at x0.

(b) If f is is [(ii)-gH]-differentiable at x0 ∈ [a, b] then f is CF [(ii)− gH]−differentiable
at x0.

4 Hybrid fuzzy fractional differential equation

Consider the hybrid fuzzy differential equation:{
gHDα

∗ x(t) = f(t, x(t), λk(x(tk))), t ∈ [tk, tk+1]
x(tk) = xk,

(8)

where 0 ≤ t0 < t1 < · · · < tk < · · · , tk → ∞, f ∈ C[R+ × RF × RF ,RF ],
λk ∈ C[RF ,RF ]. be as follows:

gHDα
∗ x(t) =

gHDα
∗ x0(t) = f(t, x0(t), λ0(x0)), x0(t0) = x0, t ∈ [t0, t1]

gHDα
∗ x1(t) = f(t, x1(t), λ1(x1)), x1(t1) = x1, t ∈ [t1, t2]

gHDα
∗ x2(t) = f(t, x2(t), λ2(x2)), x2(t2) = x2, t ∈ [t2, t3]

...

gHDα
∗ xk(t) = f(t, xk(t), λk(xk)), xk(tk) = xk, t ∈ [tk, tk+1]

...

(9)
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With respect to the solution of (8), we determine the following function:

x(t, t0, x0) =



x0(t), t ∈ [t0, t1]
x1(t), t ∈ [t1, t2]
x2(t), t ∈ [t2, t3]
...
xk(t), t ∈ [tk, tk+1]
...

(10)

We note that the solutions of (8) are piecewise differentiable in each interval
for t ∈ [tk, tk+1] for a fixed xk ∈ RF and k = 0, 1, 2, . . .. We may replace (8)
by the following ODEs:

Dα
∗ x

−(t) = f−(t, x, λk(xk)) = f−
k (t, x−, x1, x+, λk(xk)),

x−(tk) = x−
k ,

Dα
∗ x

1(t) = f1(t, x, λk(xk)) = f1
k (t, x

−, x1, x+, λk(xk)),
x1(tk) = x1

k,
Dα

∗ x
+(t) = f+(t, x, λk(xk)) = f+

k (t, x−, x1, x+, λk(xk)),
x+(tk) = x+

k .

(11)

That is, for each t, the pair [x+(t, r), x−(t, r)] is a fuzzy number, where x−(t, r), x+(t, r)
are, respectively, the solutions of the parametric form given by:

Dα
∗ x

−(t; r) = F−
k (t, x−(t; r), x+(t; r), λk(xk)),

x−(tk; r) = x−
k (r),

Dα
∗ x

+(t; r) = F+
k (t, x−(t; r), x+(t; r), λk(xk)),

x+(tk; r) = x+
k (r).

(12)

for each 0 ≤ r ≤ 1. For a fixed r, to integrate the system (12) in

[t0, t1], [t1, t2], · · · , [tk, tk+1], · · · .

5 Hybrid functions

Hybrid functions which consist of block-pulse functions and different polyno-
mials, such as Legendre polynomials, Chebyshev polynomials, bernoulli poly-
nomials and Bernstein polynomial, have a special place in differential equations
and integral equations. Here we apply hybrid functions based upon block-pulse
functions and the second kind Chebyshev polynomials.

5.1 hybrid functions based upon block-pulse functions and the second kind
Chebyshev polynomials

Definition 11 The second kind Chebyshev Polynomials are defined on inter-
val [−1, 1] by

Um(t) =
sin(m+ 1)θ

sin θ
, t = cos θ, m = 0, 1, 2, ....
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These polynomial functions are orthogonal with respect to the weighted func-
tion w(t) =

√
1− t2, on the interval [−1, 1] and satisfy the following recursive

formulas

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, ...

Definition 12 The hybrid functions hnm, n = 1, 2, ..., N, m = 0, 1, ...,M−1,
on the interval [0, tf ) are defined as, hnm are defined as,

hnm(t) =

Um(2Nt− 2n+ 1), t ∈ [
n− 1

N
,
n

N
),

0, o.w.,

where n and m are the order of the block-pulse functions and the second kind
Chebyshev polynomials, respectively. Since hnm(t) consists of the block-pulse
functions and the chebyshev polynomials, which are both complete and orthog-
onal, so a set of the hybrid functions based on them is complete orthogonal
set.

5.2 Approximations and operations

In this section, we apply the Hybrid functions to approximate an arbitrary
function. A function f(t) ∈ L2

w[0, tf ], may be expanded as the following:

f(t) =
∞∑

n=1

∞∑
m=0

cnmhnm(t) ∼=
N∑

n=1

M−1∑
m=0

cnmhnm(t) = CTHµ(t). (13)

where µ(t) = NM,

C = [c10, ..., c1(M−1), c20, ..., c2(M−1), ..., cN0, ..., cN(M−1)]
T ,

and

Hµ(t) = [h10, ..., h1(M−1), h20, ..., h2(M−1), ..., hN0, ..., hN(M−1)]
T .

Let µ = NM , The integration of the vector Hµ(t), is given by∫
Hµ(t) ≈ Pµ×µHµ(t),

where Pµ×µ is the µ×µ operational matrix for integration, and can be obtained

as follows Pµ×µ ≈ 1

2µ
Ψµ×µF

αΨ−1
µ×µ. In above relation, square matrix Ψµ×µ by

using collocation points ti =
2i− 1

2µ
, i = 1, 2, ..., µ, and Fα matrix are defined

with

Ψµ×µ = [Hµ(
1

µ
) Hµ(

3

2µ
) · · · H(

2µ− 1

2µ
)],
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Fα =
1

µα

1

Γ (α+ 2)


1 ϵ1 ϵ2 · · · ϵµ−1

0 1 ϵ1 · · · ϵµ−2

0 0 1 · · · ϵµ−3

...
. . .

...
0 0 0 0 1


with ϵk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1, for k = 1, 2, ..., µ− 1.

Theorem 3 Assume that f(t) ∈ CFM [0, 1] is a fuzzy-valued function with
bounded M th derivative, i.e. D(f (M)), 0) ≤ L. If the function f can be ex-
panded as a fuzzy finite sum of hybrid functions

{h10, · · · , h1(M−1), h20, · · · , h2(M−1), · · · , hN0, · · · , hN(M−1)},

then by using hybrid basis functions, the mean error bound is presented as fol-

low: Dw(f(t), C
THµ(t)) ≤

2L

NMM !
. where Dw(u, v) = (

∫ 1

0
D(u(t), v(t))w(t)dt)

and w =
√
1− t2

Proof. The function f is a fuzzy function thus it can be written as fr =
[fr, f

r
], for all r ∈ [0, 1], for which fr and f

r
are real functions. In addition,

the assumptions follow that |(fr)M | ≤ L and |(fr
)M | ≤ L

Dw(f(t), C
THµ(t)) =

∫ 1

0

(f(t), CTHµ(t))w(t)dt (14)(∫ 1

0

( sup
r∈[0,1)

max{|fr − crTHµ(t)|, |f
r − crT |Hµ(t)})w(t)dt

)
(15)

sup
r∈[0,1)

max

{(∫ 1

0

|fr − crTHµ(t)|w(t)dt
)
,

(∫ 1

0

|fr − crTHµ(t)|w(t)dt
)}
(16)

≤ 2L

NMM !
(17)

the last inequality is according to Theorem 1 in [8].

In Theorem 3 we get a upper bounded that shows for M,N are sufficiently
large, we have CTHµ(t) → f(t).

6 Numerical examples

To give a clear overview of our study and to illustrate the above discussed
technique, we consider the following examples.
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Example 1 Consider the following hybrid fuzzy IVP,
gHDα

∗ x(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk + 1],

tk = k, k = 0, 1, 2, . . .

x(0) = [0.75, 1, 1.125],

(18)

m(t) =

{
2(t(mod1)), if t(mod1) ≤ 0.5

2(1− t(mod1)), if t(mod1) > 0.5,

λk(µ) =

{
0̂, if k = 0

µ, k ∈ {1, 2, . . .}.
(19)

For the which 0̂ ∈ RF define as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x ̸= 0.
The hybrid fuzzy initial value problem (18) is equivalent to the following sys-
tem of fuzzy initial value problems (for (i)-differentiability):



Dα
∗ (x

−
0 ) = x−

0 (t),

Dα
∗ (x

1
0) = x1

0(t),

Dα
∗ (x

+
0 ) = x+

0 (t), t ∈ [0, 1],

x−(0) = 0.75, x1(0) = 1, x+(0) = 1.125,

Dα
∗ (x

−
i )(t) = x−

i (t) +m(t)x−
i (ti),

Dα
∗ (x

1
i )(t) = x1

i (t) +m(t)x1
i (ti),

Dα
∗ (x

+
i )(t) = x+

i (t) +m(t)x+
i (ti), t ∈ [ti, ti+1],

xi(ti) = xi−1(ti), i = 1, 2, 3, ...

In (18), x(t) +m(t)λk(xk(t)) is a continuous function of t, x and λk(x(tk))
and the fuzzy IVP{

gHDα
∗ x(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k,

x(tk) = xtk ,
(20)

has the exact solution as CF [(i)− gH] [1]:
For [0, 1], the exact solution of (18) satisfies

x(t) = [0.75Eα(t
α), Eα(t

α), 1.125Eα(t
α)].

For [1, 1.5], the exact solution of (18) satisfies

x(t) = x(1)Eα[(t− 1)α] +

∫ t

a

(t− x)α−1Eα,α[λ(t− x)α]2(x− 1)dx.

For [1.5, 2], the exact solution of (18) satisfies

x(t) = x(1)Eα[(t− 1)α] +

∫ t

a

(t− x)α−1Eα,α[λ(t− x)α]2(2− x)dx.

But solve integrals arise in solution is not easy, So we don’t have exact explicit
solution, Hence approximate solutions will be very useful. To numerically solve
the hybrid fuzzy IVP (18) we will apply the hybrid functions method with
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M = 3 and N = 2 for the following hybrid fuzzy differential equations systems.
The comparison between the exact and numerical solutions on [0, 2] or [0, 1] is
shown in Figures 1,2,3,4.

Example 2 Consider the following hybrid fuzzy IVP, gHDα
∗ x(t) = −x(t) +m(t)λk(xk)), t ∈ [tk, tk+1],

tk = k, k = 0, 1, 2, . . . ,
x(0) = [0.75, 1, 1.125],

(21)

where

m(t) = sin(πt), k = 0, 1, 2, . . . , (22)

λk(µ) =

{
0̂, if k = 0
µ, if k ∈ {0, 1, 2, . . .} (23)
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now, by (ii)-differential The hybrid fuzzy initial value problem (21) is equiva-
lent to the following system:



Dα
∗ x

−
0 (t) = −x−

0 (t),
Dα

∗ x
1
0(t) = −x1

0(t),
Dα

∗ x
+
0 (t) = −x+

0 (t), t ∈ [0, 1],
x(0) = [0.75, 1, 1.125],
Dα

∗ x
−
i (t) = −x−

i (t) +m(t)x−
i (ti),

Dα
∗ x

1
i (t) = −x1

i (t) +m(t)x1
i (ti),

Dα
∗ x

+
i (t) = −x+

i (t) +m(t)x+
i (ti), t ∈ [ti, ti+1],

xi(ti) = xi−1(ti), if i is odd

Dα
∗ x

−
i

′
(t) = −x−

i (t) +m(t)x+
i (ti),

Dα
∗ x

1
i
(
t) = −x1

i (t) +m(t)x1
i (ti),

Dα
∗ x

+
i

(
t) = −x+

i (t) +m(t)x−
i (ti), t ∈ [ti, ti+1],

xi(ti) = xi−1(ti), if i is even

(24)

For [0,1], the exact solution of Eq. (21) satisfies

x(t) = [0.75Eα(−tα), Eα(−tα), 1.125Eα(−tα)]

For [1,2], the exact solution of Eq. (21) satisfies,

x(t) = x(1)Eα[−tα] +

∫ t

0

(t− x)α−1Eα,α[−(t− x)α]sin(πx)dx

0.5 1.0 1.5 2.0

0.4

0.6

0.8

1.0

approximate solutions

yr

y1
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the exact and approximate solutionsfor Α=1

Fig. 3 yr, yrand y1 with α = 1 for example 2 on [0,2]
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