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1 Introduction

The continuous-time algebraic Riccati equation (CARE)
A'X+XA+Q-XGX =0; AGQeC™™ G =G,.Q =Q, (1)

which is a famous matrix equation with linear and quadratic terms, has at-
tracted several authors. Recent examples include books by D. A. Bini, B.
Tannazzo, B. Meini, [7], and by H. Abou-Kandil, G. Freiling, V. Ionescu, G.
Jank, [2]. An old source is a book by P. Lancaster and L. Rodman, [16]. For
a newer, see V. Simoncini, D. B. Szyld, M. Monsalve, [30]. arises in,
for example, classical problems of systems theory, differential equations, and
filter design, as well as in differential games. References to these motivating
problems are strewn throughout the literature and particularly in several ear-
lier works. References [1}7,/8,|16}/18] deal in varying detail with equations of
type in which A* denotes the conjugate transpose of the matrix A and
n X n matrix solutions X are to be found.

However, engineers lack precise knowledge regarding the process and its
input data. This lack of knowledge and the inherent inexactness in measure-
ment make a verification method cycle tasks as design of a formal model and
definition of relevant parameters. Nevertheless, less attention has been paid to
the form of uncertainties that may occur in the matrix coefficients in .

One of the most well-known methods of representing uncertainty and/or
ambiguity in mathematics is interval analysis [4]. In interval analysis, uncer-
tain parameters are described by a lower and upper bound then, (nearly) sharp
bounds on the solution(s) are computed. So, the following interval continuous-
time algebraic Riccati equation (ICARE) should be solved

A*X + XA +Q—-XGX =0, (1.2)

where A, G and Q are known complex interval matrices and G and Q are
interval Hermitian.

Up to our knowledge, a few works concerning to the interval form of
CARE have already been done; see, e.g., |14,17,/28,[29]. In [17], the
authors apply Brouwer’s fixed point theorem to calculate verified solutions of
the ARE

ATX + XA+ Q=XBR'BTX; Q,ReR™™, (1.3)

with symmetric matrices @ and R, @) positive semi definite and R positive def-
inite while here and everywhere in this note, A7 represents the transpose of
A. They find an interval matrix including a positive definite solution of .
Then, they claim that this verification procedure can extend to ARE problem
for interval matrices, as well. In [28,|29], Shashikhin uses an interval linear
system to find an interval enclosure for the united solution set of the interval
Sylvester matrix equation. Hashemi and Dehghan [14] suggest a modification
of Krawczyk operator with a reduction in computational complexity of obtain-
ing an outer estimation of the united solution set to AX +XAT = Q, provided
that the matrix mid(A) is diagonalizable. The same paper also includes the
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generalized concept of AE-solution sets to the interval Lyapunov matrix equa-
tion together with some analytical characterizations for these solution sets.
In addition to an iterative method, the recent paper [9] recommends some
efficient approaches for enclosing the united solution sets of preconditioned
interval generalized Sylvester matrix equations which are again based on a
modified variant of Krawczyk operator and require only O(n?®) operations un-
der some assumptions on some spectral decompositions. Necessary conditions
for characterizing the solution set and a sufficient condition for boundedness
of the united solution set are also suggested.

In this paper, we will present a tight verified enclosure for the so-called
united stable solution set of the interval continuous-time algebraic Riccati
equation which is not mentioned in the literature in this general form, as
we know. We develop and characterize the concept of AE-solution sets of
ICARE (1.2) and then address the problem of computing verified outer esti-
mations for the united stable solution set of ICARE , that is, determining
an interval matrix which is guaranteed to contain the united stable solution
set of . Indeed, our approach is based on the Krawczyk method, which we
modify in such a manner that the computational complexity for the ICARE
is reduced to n?.

Moreover, to verify the stabilizing property of all solutions in the computed
interval matrix, we have used Algorithm 7 from [13] based on the method
described in [19].

In the following, we introduce some symbols and notation in Section
Then, we define and characterize the generalized AE-solution sets to the in-
terval continuous-time algebraic Riccati equation in Section (3| In Sec-
tion [4] we focus on the united stable solution set to the ICARE and develop
an approach for outer estimation of the united stable solution set. We test
the performance of our algorithm on some standard examples in Section
Section [] ends this paper with a short summary.

2 Preliminaries

We use the following abbreviations: K — either of the fields of real, R, or com-
plex numbers, C; K™ — the space of n-dimensional vectors over K; K"*™ — the
space of n x n matrices over K; IK" — the set of all n-dimensional inter-
val vectors over K; IK"*"— the set of all n x n interval matrices over K;
I, — the unit n x n matrix; A € C™*", AT € C**™ and AY = A’ €
C™*™ — the complex conjugate, transpose and complex conjugate transpose
of A € C™*™; vec(Z) € C™" — the vector column-wise representation of the
matrix Z € C"™*"; A® B € C"™P*™ — the Kronecker product of an m x n
matrix A = (A4;;) and a p x ¢ matrix B; A./B — the element-wise division of
a matrix A = (A4;;) € C™*” by a matrix B = (B;;) € C™*" provided that
B;j # 0, for each 1 <i < m and 1 < j < n; Diag(d) € C"*™ — the diagonal
matrix whose (i,) entry is d; where d = (dy,ds, . .., d,)T € C"; diag(D) - the
vector whose elements are the diagonal entries of D where D is a diagonal ma-
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trix; realmin — the smallest positive normalized floating point number. Most
of these operations and notion are analogously defined for interval quantities.

Also, all interval quantities will be typeset in boldface whereas lower case
will imply scalar quantities or vectors and upper case will denote matrices.
Underscores and over scores will show lower bounds and upper bounds of
interval quantities, correspondingly.

Complex intervals can be defined either as rectangles or as discs. We use
the definition as discs for the circular complex interval or simply the complex
interval x, i.e., x 1= {z € C: |z—mid (x)| < rad (x)} = (mid (x),rad (x)) when
the radius, rad (x) belongs to R with rad (x) > 0 and the center, mid (x) is in
C.

The operations on the circular complex intervals, IC, are introduced as
generalizations of operations on complex numbers [4]. We emphasize that the
definitions of addition, subtraction and inversion substantially coincide with
their set theoretic definitions but the set {zy: = € x,y € y}, in general, is not
a disc. Fortunately, one of the basic properties of interval arithmetic, which
makes its use well-founded, is that respects inclusion: for all the four basic
arithmetic operations o € {+, —, -, /} one has

{roy:zexycy} Cxoy,

in which x and y are two real or circular complex intervals. In the case of
division, we need to assume that 0 ¢ y for the operation to be well-defined.

Other abbreviations are as follows: J(x,y) — the interval hull of two inter-
vals x and y: the smallest interval containing x and y; mig(x) := min{|z| : z €
x} — the mignitude of x € IC; A = (mid(A),rad(A)) € IC™*" — the m x n in-
terval matrix A whose (i, j) element is the complex interval (mid(A;;), rad(A;;)
with rad(A;;) > 0, 1 <i <m,1 < j < n. For interval vectors and matrices,
mid, rad, mig and [0 will be applied component-wise.

Now, we shall recall some basic facts about Kronecker product, vec opera-
tor, mid, rad and O. For Lemmas 21| and [22] see for instance [10] and [15] and
for Lemmas [23| and [24] see for instance [21] and [5].

Lemma 21 Assume that A = (Ai]‘), B = (Bij), C = (Cl) and D = (DZJ) be
complex matrices with compatible sizes. Then,

(A® B)(C® D)= AC ® BD,

AR(B+C)=(A®B)+ (A (),

(A® B)" = A" ® B,

(A B! = A"' @ B~!, if A and B are invertible,

vec(ABC) = (CT @ A)vec (B),

( Diag(vec (A)))_1 vec (B) = vec (B./A), if A;j # 0 for each (1, 7).

Notice that if D = Diag(d) is a diagonal interval matrix, with d =
(di,da,...,dy)T and 0 & d; for each i = 1,2,..., N, then we may define
D! :=Diag ((d; "', d;",....dy")7).

Lemma 22 Let A = (A;;), B = (B;;) and C = (C;;) be complex interval
matrices of compatible sizes. Then,

Ryt

S Grds o o~
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1. {(CT ® A) ve

c(B): AcA, BEB, C¢ c} gvec(A(BC)),
2. {(CT®A)V6C(B :AeA BeB, Ce C} - Vec((AB)C),
1

3. (Diag(vec (A))> vec (B) = vec(B./A), if 0 ¢ Ay for all (i, ).

Lemma 23 Let A,B € IC™*" and X be a matriz with complex elements and
compatible size. Then,

A CB < |mid(B) — mid(A)| < rad(B) — rad(A),
mid(A + B) = mid(A) + mid(B),

rad(A £ B) = rad(A) + rad(B),

mid(AX) = mid(A)X,

mid(XA) = X mid(A),

rad(AX) =rad(A)|X]|,

rad(XA) = | X|rad(A).

NS G Lo o=

Lemma 24 Let A € IC™*" and suppose that & and 2 be two bounded sets of
complex point matrices, all of the same size. Then,

1. ¢ C 2 =00 C 1,
2.9CA=0PCA.

3 Generalization and characterization of AE-solution sets to
ICAREs

The AE-solution sets are studied frequently, e.g., in Shary [25}27], Gold-
sztejn [11] and Goldsztejn and Chabert [12]. Shary introduced the concept of
generalized solution sets and AE(AllExist)-solution sets to a linear interval sys-
tem of equations [26,27]. In [27], quantifiers are used to describe and recognize
various kinds of interval uncertainty in the course of modeling. The concepts
of generalized solution sets and AE-solution sets to other interval (system of)
equations have been utilized by other authors, see for example [14] and [23].
By a similar convention, we consider the different possible styles of describ-
ing the uncertainty type distributions with respect to the interval parameters
of ICARE (|1.2)). Then, we study AE-solution sets, which are defined by uni-
versally and existentially quantified parameters where the former precede the
latter.

In order to define generalized AE-solution sets, we need a way to describe
the uncertainty type distribution for the interval equation . It seems to
be adequate if we fix disjoint decompositions of all the interval matrices A, G
and Q. First, we set interval matrices A" := (ij) and A3 := (A?j) of the
same size as A as follows:

A, foa;; =V A, ifoa;; =3
QV, ) ) q A_H . ) )
ij - { ? . i - { ’ .

0, o.W., 0, o.w.,
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where o is the (¢,7) element of matrix o := (o;;) defined as

V(i) eI,
QT3 it (4,5) € I

Indeed, one can partition the entire set of the indices (i,j) of the elements
A;; of the matrix A by means of the sets II' = {7}, m),...,m, } and 1" =
{Tp1s Tyt -+ Mo } such that IT" N IT" = . For (i,5) € II', Ajj is one of
the interval A-uncertainty [27), i.e., a specific property (here, satisfying in a
point matrix equation) holds for all members of A;;. A;; is of the interval E-
uncertainty [27] when (4,7) € IT"” that means only some, not all, members of
A;; have a desired property. Similarly, one can introduce non-interesting sets
of integer pairs (i, j) of entry indices of the matrices G and Q, respectively as
e ={01,0,,..., 9’} 0" ={6,,1,0 ,...,00,} and ¥' = {],¥5,...,9; }
and ¥ = {9 1, ¥ 5,...,9!, } such that all elements whose indices belong
to @ and ¥’ are of interval A-uncertainty while all entries whose indices are
chosen from @” and ¥ have the interval E-uncertainty form. There is also
this normal possibility that one of the sets in each pair (II',IT"),(©’,0") or
(@', %", but not both of them, to be empty.

We do similar work for explaining G” := (Gy;), G¥ := (G},), Q" := (Q}))
and Qa e ( zaj)

GY = {Gz‘y i 5ij =V, 4 G3 = {Gijv if B = 3,

0, o.w., 0, o.w.,

and

K if Z“:V,
ivj::{(?’ﬂ 0.,\}/7\1]., and Q?j:

{Qij7 if ;5 =3,

0, 0.W.,
as well as the quantifier matrices 5 and ~

973 it (i) €0, TIT 13 i (4,4) € U

Therefore, for all (i,j) € {1,2,...,n%} and the matrix M € {A, G, Q} we
have MY]-M?]- =0and so M = M" + M-.
Now, we can write down the formal extended definition of AE-solution sets

to ICARE (1.2).
Definition 31 We shall call the set

{X €K™ : (VAn € Agy)...(VAr, € Ary)

(VGQi € Gg/l) . (VGQL S GGL)(VQM S Ql/’i) R (VQM S QM)
(HA”;JIJr € Aﬂ// ) . (E|ATr/l2 € A.ﬂ-’/2 )(3G9;/+1 € Gg;f+1) R (HGQ’/Q S Gg//z)

(BQuy,, € Quy,,) -+ (FQyr, € Qur )(A'X + XA+ Q = XGX))},
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the AE-solution set of type afy to ICARE or briefly afvy solution set to
ICARE and denote it by X,5,(CARE; A, G, Q).

Definition |31]is a general definition while only particular cases are the ones
on interest in almost all current research in advanced interval analysis. The
basic types of AE-solution sets are:

e The united solution set to ICARE (L.2):

2333(CARE7 Aa Ga Q) = Zunt(cAREa A7 Ga Q) =
{XeK"": (FAc A)FG e F)AQ e Q)(A*X + XA+ Q = XGX)) },
which is the most interesting case among various possible choices occurs
when we pick out the existential quantifier for all the components of quan-
tifier matrices o, 8 and 7, i.e., where II' = @ = ¥’ = (). It is formed by
all possible solutions of all point CAREs, A*X + XA + Q = XGX with
AcA,GeGand Q € Q.

e The tolerable solution set to ICARE (1.2)):
23 (CARE7 Au G7 Q) = Yur (CARE7 A7 G7 Q) =
{X eK": (VA€ A)(VGeF) (AR e Q)A*X + XA+Q =XGX))}.
Hence, the tolerable solution set is that set such that if X € K™*™ belongs
to it, then for each A € A and each G € G, there exists at least one @ € Q
with A*X + XA - XGX =—-Q or A*X + XA - XGX € —Q.

e The controllable solution set to ICARE (|1.2):
EHHV(CAREv Aa Ga Q) = Ecnt(CAREv Aa Ga Q) =
{XeK"™:(VQeQ)(FAc A)FG e G)(A*X + XA+ Q = XGX)) },

formed by all matrices as X € K"*™ such that for any @ € Q, one could
determine some A € A and some G € G satisfying A* X +XA+Q = XGX.

Remark 32 The united solution set to ICARE is the widest solution set of
all possible AE-solution sets to ICARE, i.e.,

Yopy(CARE; A, G, Q) C X, (CARE; A, G, Q).
Theorem 33
Yop(CARE; A, G,Q) = (3.1)

mA/eAV ﬂG/GGv leer UA”EAB UG”GGH UQ//GQH
{X c Knxn . ((A/ +A/l)*X +X(A/ + A//) _|_ (Ql + Ql/) — X(Gl + Gl/)X) } .

Specifically,

Yunt(CARE; A G, Q) = Uaeca Ugea UQGQ{X eK”" A X+ XA+Q = XGX},
Yur(CARE; A, G, Q) = Naca Ngeg Uge{X e K" : A" X + XA+ Q = XGX},
Yent(CARE: A G, Q) = Ngeq Uaca UGeG{X ERK" A X + XA+Q = XGX}
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Proof By exploiting the matrices AY, A7, G",G7,Q" and Q7 and Defini-
tion we can rewrite the a3y-solution set to ICARE (|1.2) as
Y.5,(CARE; A, G, Q) = {X € K™ : (VA € AV)(VG' € G")(VQ' € Q")
(34" € AF)(3G" € GF)(3Q" € Q7)
(A" +AT)X + X (A + A") + (@ + Q") = X(G'+ G") X))}
= N ) {XeK™ (34 € AH(IG" € GF)(3Q" € Q) :
A’€eAY G'eGY Q'eQY
(A"+ AT)X + X (A" + A") + (@' + Q") = X(G'+ G") X))}
AleAv G’EGV Q/EQV A//GAS GlleGH Q//EQH
{X c K’I’LXTL . ((A/ +AI/)*X +X(A/ +A//) + (Ql + Q//) — X(G/ + G//)X)},
which establishes formula ([3.1)). The rest of the proof is straightforward.

Succeeding theorem asserts that the fundamental theorem for characteri-
zation of the AE-solution sets of an interval linear system (z € Xo5(A,b) if
and only if AYX —b" C b — A2 X) |27, Theorem 3.4] does not hold any more
for ICAREs. Remark [35| shows the reasons why this occurs.

Theorem 34 X € X,3,(CARE; A, G, Q) if and only if
{A"X + XA +Q —XG'X:A cA".GeG",Q Q") C (3.2)
{_(A//*X —I—XA// +Q// _ XG//X) = AH,GH c GEI,Q// c QEI}
Proof As the proof of Theorem one could recompose the definition of
Yap~(CARE; A, G, Q) in the following equivalent form:
Yopy(CARE; A, G, Q) = {X e K" :
(VA € AV)(VG' € GM)(VQ' € Q*)(3A” € ANH(3G" € G)(AQ" € Q)
(A + A" X+ XA +A")+ Q' +Q") = X(G'+G")X))}. (3.3)
Thus, for all A’ € AY, G’ € G¥ and Q' € QV, there exist some A” € A7,
G" € G7 and Q" € Q7 such that
A"X + XA+ Q' - XG'X =—-(A"X + XA" +Q" — XG"X). (3.4)
Now, let X € Y,3+(CARE; A, G, Q) and D € {A"X +XA'+Q - XGX: A €
AY,G" € GY,Q" € Q"}, s0 one can find some matrices like 4] € AY, G} €
GY, Q) € QY for which D = A7 X + XA} + Q) — XG}X. Now, (3.3) implies
that for adequate matrices A7 € A3, G} € G3,Q/ € Q3, D = —(A*X +
XA! 4+ Q7 — XGYX) holds. Thus, (3.2) is achieved. Now, assume that (3.2)
holds. According to (3.3), it is sufficient to show that for all A’ € AY,G’ €
G, Q" € QY, there exist A” € A3, G" € G?, Q" € Q7 such that
(A/ + A//)*X +X(A, +A”) + (Ql + Q//) _ X(G/ + G//)X — 0
Thus ([3.2)) yields that for these fixed A’ € AY,G" € GY,Q" € Q" we should
have A” ¢ A3, G" € G7,Q" € Q7 for which (3.4)) is true.
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Remark 35 Only the weak equality
DY =0{DY : D e D} (3.5)

is valid for any D € IK™* and any Y € KF*™ unless when m = 1 121,
Proposition 3.1.4]. Therefore, we have

A*X +XA+Q—-XGXD (3.6)
O{A*X +XA+Q-XGX=0:AcA,G€G,QeqQ}.

Indeed, (3.6) is a special case of the definition of the interval arithmetic oper-
ations.

Two characterizations of some solution sets are provided by Theorem
and Theorem

Theorem 36 If X € Y53,(CARE; A, G, Q) then
~Q'CA*X +XA+Q° - XGX. (3.7)

Proof Let X € Y33,(CARE; A, G, Q). Then, leads to
{Q:Q Q") C{-(A"X+XA"+Q"-XG"X): A" ¢ A,G" € G,Q" € Q°}.
Moreover, Lemma [24] part |1{ and yields

Q' =0{Q: @ eqQ} C

O{— (A" X+ XA"+Q" - XG"X): A" c A,G" € G,Q" € Q°}.
Similarly to we can deduce

Q" C —(A*X + XA+ Q° — XGX).

Besides, for any two interval(s) (quantities) x and y we have x Cy <= —x C
—y [4]. Therefore, we conclude that — Q¥ C A*X + XA + Q> — XGX.

Theorem 37 If
A*X + XA+ Q" - XGX C —Q7, (3.8)
then X € S, (CARE: A, G, Q).
Proof Suppose holds. Since
{A*X+XA+Q -~ XGX |AcA,GeG,Q Q") C
{A* X+ XA4+Q —XGX |AcA,GeG,Q €Q"},
we can write
{A*X + XA+ Q —XGX:Ac A, GeG,Q cQ"} C
A'X+XA+Q"-XGX C-Q ={-Q":Q" Q).
We have thus proved
{A*X +XA+Q -~ XGX:AcA,GcG,Q cQ'}C{-Q":Q" Q).

That is enough to put @« = 8 =V and A? = G? = 0 and now Theorem
concludes X € Xy, (CARE; A, G, Q).
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New characterizations of the AE-solution sets X53,(CARE; A, G, Q) and
2wy (CARE; A, G, Q) in terms of midpoint and radius matrices are our next
conclusions.

Theorem 38
EHH’Y(CARE7 Aa Ga Q) -
{X e K" : |mid(A)*X 4+ X mid(A) — X mid(G)X + mid(Q)| <
rad(A)*|X| + | X|rad(A) — |X|rad(G)|X| 4 rad(Q?) — rad(Q")}.

Proof Suppose X € XY53,(CARE; A, G, Q). Then, Theorem together with
Lemma [23] part [I] follows

|mid(A*X + XA + Q% — XGX) — mid(—Q")| <
rad(A*X + XA + Q7 — XGX) —rad(—Q").
By repeatedly using Lemma and considering | X?| < | X|?, we attain
| mid(A)X + X mid(A) — X mid(G)X + mid(Q?) + mid(Q")| <
rad(A)*|X| + | X|rad(A) — |X|rad(G)|X| + rad(Q?) — rad(Q").

Because of mid(Q?) + mid(Q") = mid(Q> + Q) = mid(Q) the proof is
completed.

Theorem 39 If
| mid(A)*X + X mid(A) — X mid(G)X + mid(Q)| < (3.9)
rad(Q”) — rad (Q") — rad(A)*|X| — | X|rad(A) — |X|rad(G)|X|,
then X € Yy, (CARE; A, G, Q).
Proof In view of Q = Q% + QY, (8.9) is equivalent to
|mid (A*X + XA 4+ Q" — XGX) —mid(—Q?)| <
rad(—Q?) —rad (A*X + XA + Q" — XGX).

Now, Lemma part [1] yields A*X + XA + Q" — XGX C —Q? and then
Theorem implies that X € Yvv,(CARE; A, G, Q).

4 The United Solution Set of ICARE: characterization and
estimation

Apart from the many applications in the so-called scientific computation fields [3],
the united solution set is the most common and most straightforward method
to define a solution set to an interval equation. So, special attention to this
set is not unexpected.
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Theorem 41
Zunt(CARE: A, G,Q) C {X e K" : (A*X + XA — XGX)N (-Q) #0},
and
Yunt(CAREEA,G,Q) C{X e K" : 0 A" X+ XA - XGX +Q}.
Moreover,

X € Xy (CARE; A, G, Q) = (4.1)
|mid(A)*X + X mid(A) — X mid(G)X + mid(Q)|
<rad(A)"|X|+ | X|rad(A) — | X|rad(G)|X]| + rad(Q).

Proof Suppose X € X,,:(CARE; A G, Q). Therefore for some A € A;G € G
and @ € Q, the equality A*X+XA—XGX = —@Q holds. Hence, —Q € (A* X+
XA - XGX)N(—Q). On the other hand, A*X + XA — XGX N(-Q) #0
implies 0 € A*X + XA +Q — XGX and the first two results are found. (4.1)
is also an immediate result of Theorem [38l

Recall that a Hermitian solution X (X,) of CARE is called stabilizing
(resp. anti-stabilizing) if all the eigenvalues of the closed loop matrix A — G X
(resp. A—GX,) have negative (resp. positive) real parts or A—G X be Hurwitz
stable. Such solutions play important roles in applications, therefore conditions
that guarantee existence and/or uniqueness of stabilizing and anti-stabilizing
solutions are of considerable interest, see for instance [7]. So, in CAREs the
interesting solutions are the stabilizing and anti-stabilizing ones. Therefore, it
is reasonable to define the united stable solution set as

Yunts(CARE; A, G, Q) := (4.2)
{XeK""|(3A€ A)(FG € G)(IQ € Q)
A*X + XA+ Q =XGX and A — GX is Hurwitz stable)}.

Note that the techniques presented in this paper can be adapted with minor
sign changes to anti-stabilizing solutions.

Theorem 42 A necessary and sufficient condition for the interval continuous-
time algebraic Riccati equation to have a non-empty united stable solution
set for all Q € IC™™" is that o(A — GX) NI =0 where I denotes the imagi-
nary axis, o(A — GX) := {A(A — GX) : X is an eigenvalue for A— GX, A €
A, G € G} denotes the interval spectrum of A — GX and X* = X.

Proof First, let us fix @1 € Q and its corresponding A; € A and G; € G.
Recall the conditions of existence and uniqueness of stabilizing solutions which
are given in terms of spectral properties of associated Hamiltonian matrix
A1 —G1 X [7): “X; is the stabilizing solution for AT X+ XA +Q1—XG1X =0
if and only if A; — G1X, has no imaginary eigenvalue”. This completes the
proof.
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From this point on, let us suppose that the united solution sets are nonempty
and bounded. Our goal in Section[d.1]is to find a verified outer estimation (with
the narrowest possible interval components) for the united stable solution set
because X,,;s(CARE; A, G, Q) is generally not an interval matrix.

4.1 A variation of the Krawczyk method for enclosing X¥\,,,+s(CARE; A, G, Q)

In nonlinear analysis, the Brouwer fixed point theorem is a well-known theo-
rem [22]:

Theorem 43 Let & C RN be a convexr compact set. If h : & — RY is q
continuous function that maps @ into itself, i.e.,

h(d) C &, (4.3)

then h has a fized point x, on P.

One can skirts the difficulties arising in the practical verification of crucial
inclusion if the tools for computing interval extensions of functions are
available. Furthermore, we should restrict ourselves to consider the domain
in the form of interval boxes, that is, requiring @ € ICY and also, we should
change the exact range of values of the function h over @ to its outer estimate
through interval extension.

Thus, one can derive the solution existence test proposed by Krawczyk
which is very popular in the modern interval analysis [10,/13]. The classic
Krawczyk method is very costly in verifying CARESs, see again [10,[13] to
discover its cost which is at least O(n%). It can be modified as follows:

Theorem 44 (sce e.g. [13]) Assume that h: W C CN — C¥ is continuous.
Let R e CN*N 3 e W and z € ICY be such that & +z C . Moreover, assume
that S C CN*N s a set of matrices such that the slopes S(i,x') belong to S
for every x’ € ¥ +z=:x. If

Kn(i,R,z,S8) :={—Rh(Z)+ (INn —RS)z:S €S,z z} Cint(z), (4.4)

then the function h has a zero x, in & + Ky(%, R,2,S) C x. Moreover, if
S(y,y") € S for each y,y' € x, then x, is the only zero of h contained in x.

Note that a slope S of the function h: ¥ C CY — CV at (z,y) € CVN xCV
is a mapping from ¥ x ¥ to CVN*¥ such that h(x) — h(y) = S(z,y)(z — y).
Now, assume that

FX)=A"X+XA+Q-XGX, AcAGeG,QeqQ, (4.5)

and let the point matrix mid(A — GX) has the following computed spectral
decomposition:

mid(A—GX) = VAW, V,A, W € C"™" A =Diag(A1, Aa,..., \p), W = VL
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Recall that a matrix function H : CN*N — CVXN s said to be Fréchet
differentiable at X if there is some linear transformation Ly : CN*N —
CN*N such that for all E € CV*V,

H(Xo+ E) - H(Xo) — Lu(Xo, E) = o(|| E])-

Also, the unique matrix K (Xg) € CN *N* is called the Kronecker matriz
form of the Fréchet derivative of H at Xy whenever for any matrix E €
CN*N vec (Ly(A,E)) = Ky (A)vec (E).

When F is as in and N = n then Lemma 1] part [f| turns out that

Kp(X)=1,®(A-GX)"+(A-GX)"®1,, X = X" (4.6)

By the inclusion property of interval arithmetics, ky(Z, R, 2, S) :== —Rf(&)+
(In — RS)z is a superset of K¢(Z, R, z,S). So, if k¢(Z, R,z,S) C int(z) holds
then Ky (#, R, z,S) C int(z) will result.

The typical choice so that the relation is likely to hold is taking as
Z a good approximation of a zero of f and as R a good approximation of
(Kp(#))~!. The following result shows that the Kronecker matrix form of the
Fréchet derivative can be used to find an enclosure for the slope in the modified
Krawczyk method. We report this conclusion from [13].

Theorem 45 (15, Theorem 3.8] Let X be an interval complex matriz, and
X € X be Hermitian. Then, the interval matriz I, (A—GX)*+(A-GX)T®I,
contains the slopes S(&,z") for each X' € X where & = vec (&) and =’ =
vec (X7).

So, the next ingredient in applying Krawczyk algorithm, R, can be chosen
as
R=VTeowHA'VTeW™), A=L oA +AT a1,
provided that A, V and W be invertible. The reason for this choice is that we
can factorize Kr(X) by using Lemma [21|so that
Kr(X)=LoA-GX)+(A-GX)T 21,
=V TeoWwW")I,® (WA -GX)W 1)
(VT A-GXV) L) (VT @ W),
and therefore R ~ (Kp(X))™ .

Then, the computation of two enclosures, i.e., vec(L) for [ := —Rf(&) and
vec(U) for u := (I,2 — RS)z in Kf(Z, R,z,S) can be done using exclusively
the matrix-matrix operations, as shown in Lines of Algorithm for vec (L)
and Lines of Algorithm [I] for vec (U). More details for computing these
supersets are:

l:=—-Rf(%)
=V Teow A LT e W) f(),
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and

wi= (L2 —RS)z= (L, — (VIT@WHA (VI @ W)
(I, @ (A-GY) +(A-GY )T ®1,))2
=(VToWHA T A-T,® (W(A-GY)W1)*

— (VA=Y W) T @ L)V @ W)=

The standard method to find an interval vector z = vec(Z) that satis-
fies ks (%, R,z,S) C int(z) is an iterative one based on the known e-inflation
technique [24]. Indeed, we start from the residual matrix Zo := F(X), and
proceed alternating successive steps of enlarging this interval with e-inflation
technique.

Note that the evaluation order of an expression in Algorithm [l is always

left to right.

Algorithm 1 A modified Krawczyk algorithm to efficiently compute an interval matrix
X containing Xynts(CARE; A, G, Q).

Require: Interval matrices A, G and Q
Ensure: If successful, this algorithm provides an interval matrix X containing
Yunts(CARE; A, G, Q) else it reports “failure”
1: Compute with floating point arithmetic a good approximate stabilizing solution X of
CARE (mid (A))*X 4+ X mid (A) + mid (Q) — X mid (G)X =0
2: Compute approximations V, W and A for the spectral decomposition of mid (A — GX)
in floating point
3: Compute D := (D;;) such that D;; & (A);; + (A);; in floating point
4: Compute interval matrices Iy, and Iy containing V—! and W !, respectively. Return
failure if this fails, or if D has any zero elements.
5: X = (X,0) {To ensure that all operations involving X are verified}
6: F=Q+ XA + (A* — XG)X {Gathering X in order to reduce the wrapping effects}
7. H=1I},FV
8

:J=H./D
9: L =-W*JIy
10: Z=L

11: for k=1,2,...,10 do

12:  Set Z=0(0,Z-(1,0.1) + (0,realmin))
132 M=1I,ZV

14: N=W(A-GX)Iy

15: O=Iy(A-GX+2Z)V

16: P =(A-N)*M+ M(A-O)

1727 Q=P./D

188 U=W*Qly

19: K=L+U

20:  if K Cint(Z) then

21: Return X = X + K
22: end if

23: Z=-K

24: end for

25: Return failure {Maximum number of iterations reached}
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Theorem 46 Algorithm (1| requires at most O(n3s) arithmetic operations if
the verification succeeds in s steps.

Proof Computing X in Line [I| using, for instance, ordered Schur method fol-
lowed by one step of Newton refinement in simulated quadruple precision;
computing the eigendecompositions in Lines [2| using, for example, the MAT-
LAB command eig and also computing the interval matrices Iy, and Iy using,
for instance, verifylss.m from INTLAB need O(n?®) operations. In addition,
all the other operations involve only n x n matrices so they cost again O(n?),
at most.

As we will show in the examples, our algorithm either terminated after 1
step or failed. So in practice the number of steps can be kept very small.

5 Numerical Examples

In this part, Algorithm [I]is tested in MATLAB 2013a with INTLAB v6 and
run on a laptop with 1GB of RAM.

Indeed, the solutions of can be put in one-to-one correspondence with
certain invariant subspaces of the Hamiltonian matrix

_ —1 x*
H::[A —G}:[ A BR™B

-Q -A*] ~ |-CcrQC  —A
CeC" BeC™™, Q" =QeC R =ReC™™,

2nx2
:|E(Cn><n7

that is, X is a solution of (L.1)) if and only if

H [gg} _ [gg} (A—GX).

In particular, the columns of the matrix [’;g} span an invariant subspace for
the matrix H and the eigenvalues of A —GX are a subset of the eigenvalues of
H [7]. We refer the reader to the books by Lancaster and Rodman [16] and by
Bini, Tannazzo and Meini [7] for details concerning main theoretical properties
and numerical solutions.

The coefficient matrices in [6] often come from linear-quadratic control
problems:
Minimize

1

+oo N
J(xg,u) = 5/0 (y(t)*Qy(t) + u(t)* Ru(t))dt

subject to the dynamics

& = Az(t) + Bu(t), z(0) = zo,
y(t) = Cx(t).
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Following MATLAB commands have been utilized in order to convert the
point matrix coefficients to interval ones: the center matrices are just those
given in the benchmark [6] and their radius matrices are achieved by the
MATLAB commands

[A, G, Q] = ChuLMO07Carex(1i);
IA = midrad(A,le—5*mig(A));
IG = midrad(G,1e—5+mig(G));
IQ = midrad (Q,1e—5xmig(Q));

where TA, IG and IQ are equal to the interval matrices A, G and Q, respec-
tively. Note that the radius of disturbance is a positive multiple of 1le — 5 for
all matrix coefficients.

The approximate solution of CARE associated to the left half plane re-
quired in Line |1 of Algorithm [1|is obtained using the method described in [20]
which is the ordered Schur method followed by one step of Newton refinement
in simulated quadruple precision.

In all successful examples, we report the maximum radius of the entries of
X, mr, to show the quality of the resulted enclosure X; the number of iterations
executed in Algorithm [1] for the Krawczyk loop, s, when sy, = 10 and the
total time in seconds, Time.

Note that when enclosing ¥,,,,+s(CARE; A, G, Q), we are seeking an inclusion
X as tight as possible, hence a small mr.

We also examine whether A — GX is Hurwitz stable using Algorithm 7
in [13] for any successful test. A number 1 in the corresponding Stability
column confirms the stability property of all solutions contained in the result
enclosure X, and a — means that the algorithm had already failed to compute
an inclusion.

Below, we have chosen one example from each part of [6] for testing.

Example 51 [6, Ezample 5] The first experiment is a parameter-free example
of fixed dimension in the benchmark collection for CARFEs. Indeed, this is a
9th-order continuous state space model of a tabular ammonia reactor. As noted
in [0], the underlying model includes a disturbance term which is neglected
in [0]. An outer estimation X for the united stable solution set of corresponding
ICARE A*X + XA+Q—XGX = 0 will obtain after only one iteration within
0.060780 seconds. Also, X has a mazimum component-wise radius of 0.0093.
The result of stabilizing property is positive, too.

Example 52 [6, Ezample 11] The second example presents a type of algebraic
Riccati equation arising in Hso-control problem. This is a parameter-depend
problem but of fixed size 2 in which the first parameter, i.e., € is 1. Again,
assume that there is a perturbation such that one should solve the corresponding
ICARE. The mazimum component-wise radius of the enclosure X obtained via
Algorithm[1] is 3.2631e-04, the total elapsed time is 0.077889 seconds while s
and Stability are 1. For the second parameter, i.e., € = 0 the verification
failed to find an inclusion.
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Example 53 [0, Example 16] This example is suited to test the behavior of
any algorithm for growing problem size. The results are presented at Table [1].
As one can see, either Algorithm (1] succeeds after just one step to create an
enclosure or it fails (when the size of this ezample changes from 10 to 1000 ).
If successful, the verification of the stabilizing property of computed inclusion
is also successful.

Table 1 Results for Example

Problem size mr s | Stability Time
1 4.1215e-05 | 1 1 0.054154
2 1.7350e-05 | 1 1 0.055689
3 6.1741e-05 | 1 1 0.054423
4 5.4894e-05 | 1 1 0.056061
5 9.9766e-05 | 1 1 0.056438
6 1.2608e-04 | 1 1 0.056713
7 1.4439e-04 | 1 1 0.057836
8 1.5112e-04 | 1 1 0.058185
9 3.1715e-04 | 1 1 0.076302
10 : 1000 - - - -

Example 54 The data of this example come from a system of n integrators
connected in series and a feedback controller is supposed to be applied to the n-
th system. This is a scalable example with parameters in which the eigenvalues
of the Hamiltonian matriz H are the roots of A" + (—1)"qr = 0, where Q =q
and R=r,q,7 € R.

Table 2 Results for Example

Parameters:(n,q,r] mr s | Stability Time
[2,0.001,0.001] 1.4111e-07 | 1 1 0.078590
[2,0.01,0.01] 1.4111e-06 | 1 1 0.079697
[2,0.1,0.1] 1.4111e-05 | 1 1 0.078945
2,1,1] 14111e-04 | 1 1 0.079624
[2,10,10] 0.0014 1 1 0.078989
[2,100,100] 0.0141 1 1 0.079296
(2,1000,1000] 0.1411 1 1 0.079720

As one can see in all experiments, mr and the parameters q and r have
changed with a same ratio. In addition, changing these two parameters does
not affect the total time, s and Stability.

6 Summary

In this note, we first generalized the concept of AE-solution sets to the inter-
val continuous-time algebraic Riccati equation A* X + XA +Q — XGX = 0.
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Then, we proved some analytical results for these solution sets. We then tried
to explore a modification of Krawczyk method in order to reduce the computa-
tional complexity of obtaining a verified outer estimation for the united stable
solution set to cubic, provided that the midpoint of A — GX is diagonaliz-
able. One important ingredient is also the interval techniques used to verify.
Furthermore, Algorithm [I| uses exclusively matrix-matrix operations and are
thus efficient with current implementations of machine interval arithmetic in
INTLAB.
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