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Abstract The arc costs are assumed to be online parameters of the network
and decisions should be made while the costs of arcs are not known. The poli-
cies determine the permitted nodes and arcs to traverse and they are generally
defined according to the departure nodes of the current policy nodes. In on-line
created tours arc costs are not available for decision makers. The on-line tra-
versed nodes are fixed and unchangeable for the next times. A discrete time
Markov chain is established in on-line policy times. Then, the best state is
selected to traverse the next node by a simulated annealing heuristic.
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1 Introduction

In on-line stochastic network optimization problems decisions are made se-
quentially over partial information. On-line made decisions are not changed in
the future; however, they should be feasible for the problem. The symmetric
travelling salesman problem (S-TSP) is NP-hard [4]. However, there are some
approximation algorithms where the arc costs satisfy the triangular inequality
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[3,4]. In our considered on-line model the exact costs are not revealed until
the end of the optimization process; we use the expected values as the given
advanced information. Let G = (N, A) be a complete undirected network with
node set N and arc set A. For any (7, ) € A, the cost from i toward j is equal
to the cost of reverse direction, ¢;; = ¢j;, also ¢;; < ¢; + ¢y for any (i,7) € A
and k € N. In proposed on-line model the costs are not known; however, the
expected values of the costs are given by arrival a node.

Initially, an approximated solution is created by Christofides algorithm
[3]. In on-line manner, it must be decided to move from the current node
toward the next node starting from the given source node and to return to it
finally after traversing all the nodes exactly once. The on-line routing policy
determines the order of nodes, and the made decisions could not be changed
or rejected. Ausiello et al. [2] and Wen et al. [11] assumed to traverse a number
of nodes, also Jaillet and Lu [6] considered some penalties for not served ones.
Ausiello et al. [1] and Zhang et al. [13] supposed that it is possible to visit a
node more than once. In our proposed model, it is restricted to traverse any
node exactly once and to return to the source node.

We establish a discrete time Markov chain (DTMC) according to the
on-line policies and the uniformly distributed transition probabilities. The
states of DTMC are feasible tours. Then, the simulated annealing (SA) is
applied to obtain a good improvement of the initial approximated solution.
Initially a p-approximated solution is applied. Christofides [3] produced a 3/2-
approximation solution, so it is the initial state of the established DTMC.

2 The established discrete time Markov chain

A DTMC is established at any on-line policy time that should be decided
the next traversed node in the on-line tour. So, in any transition from the
current state toward a new state exactly one arc is traversed. The process is
ended when all the nodes are traversed exactly once and it is returned to the
source node. The state Sy, for t = 1,...,n —2 and k = 1,2,....,.n — (t + 1),
is a set of nodes those are created a tour. The initial state contains the pre-
obtained approximated solution and its first node is fixed (the source node).
A fixed node is defined as the node which was traversed previously, at the
current on-line policy time ¢. Only one node could be fixed at any time. The
next state Syi1,; is created just by single permutation of the unfixed nodes
of the current state S7,. So, if vy is the last fixed node of the state S;; =
{1 = v1,02,...,0k—1, Uk, V41, .,Un, 1}, then the state S;yq ; is created by
permutation of node vy with unfixed nodes vi11,Vg42,...,0, (|[N| =n).

Theorem 1 There is no repeated state in the created states of the on-line
established DTMC forn > 7.

Proof. The initial state Sy ; contains the pre-obtained approximated solution
and its first node is fixed. There is not any repeated state among those are
created by an unfixed index. The source node is the first and the last node of
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the created states; so, the permutation is circular and any state could be ac-
counted in its opposite direction. Whereas, there are at least two fixed indices,
the permutation does not cause a repeated state because it is not possible
double/more permutation. A repeated state does not occur after index 2n — 5
(it is double permutation), however, it may be occurred before.

The initial state could be repeated in index n — 2, so v,—1 = v3 and {1 =
U1,V2, U3y« -+, Un—1,Vn, 1} = {1 = 01,0n,03,...,0p_1,02,1}, then n —1 = 3
and n = 4. The state of index n — 2 (where vy, is unfixed) could be repeated
through the states from n—1 to 2n —5 (where vy, is fixed). Suppose index r is

a repeated state, {1 = U1, Vn,v3,...,0n—1,02, 1} = {1 = Ty, Uy, Vigy - - -, U, o,
v, 4,1, 1} 80, 11 =01 = 1,1,,-1 = vz and v;, = ve, if vg = F then l, o =@
and n = 5, otherwise if vy # & then l,,_s = vy and n = 6. O

The transitions are possible from the previous on-line decided state (S} ;)
toward the created states of the current on-line policy time (Si41 ;) by an
unfixed node permutation. p; ; is the transition probability from S;; toward
Si+1,; and p;; = pjq. Let ISS‘J be the index set of the created states by
Sii,» then the transition probabilities are defined uniformly p;; = 2/(n —
(t+1))(n—1), for j € Is; , and otherwise p; ; = 0. Polychronopoulos and
Tsitsiklis [10] proposed a Markov chain that its states show pairs of location
and information. We consider directly the on-line traversed nodes, and the
expected improvement determines the next node to traverse.

3 The Simulated annealing heuristic

Although it has been shown Markov decision problems could be solved in
polynomial time [8], computations grow exponentially in practice [9]. So, we
apply a Markov chain form of the SA over the created states by DTMC [9].

Suppose C_'St‘j (T) is the expected cost of the state S;; when the temper-
ature is T, then AC; ;(T) = Csg,,, ,(T') — Cs; (T) is the expected cost dif-
ference of the transition from S7; toward Sii1 ;. The acceptance probability
A, ;(T) is the probability that S;41 ; is accepted, when the on-line policy deter-
mined to be in 57, previously. By Metropolis rule, the acceptance probabilities
are defined A; ;(T) = exp(— A C; ;(T)/T), for AC; ;(T) > 0, and otherwise
A; j(T) = 1. In the case AC; ;(T) > 0, the state S;11,; is accepted if by pro-
ducing a random number A, then A < exp(— A C;;(T)/T). For the SA the
transition probability M; ;(T') form S} ; toward S;1 ; is obtained as M; ;(T') =
pi,jAij(T), for i # j, and otherwise M; ;(T') = 1 — 3, ; pisAr,;(T). If it is
decided currently to be in Sf;, then g; ;(T') is the static probability that the
on-line policy decides to be in the state S;11 ;. The static probabilities are the
limiting-state probabilities in the steady state analysis [5].

The initial temperature is set to be enough high, such that all of the created
states are accepted those could improve the initial approximated solution.
Afterwards, the temperature is determined practically to traverse all the nodes
and to return to the source node. To determine the annealing parameters the
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proposed method by Park and Kim [7] is applied, however we change them to
reach exactly n — 2 iterations. The temperature is changed if there is no state
that AC; ;(T) < 0, then it is decreased with the rate a = To_l/(n_?’)7 where
To is the initial temperature and so T := oT'.

4 The Competitive analysis of the on-line made decisions

To minimize the expected cost of the on-line tour, the decision is done ac-
cording to the expected costs of the current policy nodes. It is not allowed
to traverse toward the states, which their expected costs exceed the initial
p-approximation solution cost (p > 1). Now, let C* be the optimal off-line
cost, C9 be the optimal on-line cost and Cy be the initial expected cost, then
C* < 09 < Cy < pC*. For two successive costs Cs,,(T) and Csg,,, ,(T)
such that AC; ;(T) > 0, we have C* < CSf,i(T) < Cy < pC*, and C* <
CSt+1,j (T) < Cy < pC*, then CSHLJ, (T) — Cszyi(T) <Cy—C*<Cy— %C_'O
In other words, exp(—=AC;;(T)/T) = exp(—(Cs,,,(T) = Cs; (1))/T) =
exp(—(Co — C*)/T) = exp(—((p —1)/p)Co).

Ausiello et al. [2] gave a 2-competitive algorithm. Jaillet and Lu [6] used
advanced information to present a 2-competitive algorithm on the real line,
2.28-competitive for general metric space and also a (1.5p + 1)-competitive
where p is the approximation ratio; also, Yu et al. [12] presented a (1 + p)-
competitive algorithm. Ausiello et al. [1] gave a ((3++/5)/2)-competitive algo-
rithm as the best possible one. Zhang et al. [13] provided a (1+ k)-competitive
non-polynomial and another (44 k)-competitive polynomial lower bounds that
k is the number of blockage arcs. Wen et al. [11] gave 2L + 1-competitive ratio
in the case of line segment [—L, L] and 2-competitive where every arc has unit
weight.

5 Experimental results

All results are obtained by MATLAB 7.6 in Dell Latitude E5500, with Intel
Core 2 Duo CPU 2.53 GHz and 1.95 GB of RAM. We use the instance networks
with Euclidean distances presented by TSPLIB available at [14]. The arc costs
are computed with 2D Euclidean distance function and the nearest integer
function is applied on the obtained solutions. For brd14051, d2103, d15112,
d18512, 11577, 13795, r15915, r15934, r111849 and usal3503 instances those an
interval is given instead of the exact optimal value, we use the lower bound
instead of the optimal offline value. The given distances are considered as the
expected values according to the uniform distribution of the arc cost. The
overall average results show the initial competitive ratio is 1.3937 and the
obtained competitive and reverse competitive (of the reverse tour) ratios are
1.3087 and 1.2994, respectively.

The detailed results of the competitive ratios for the instance networks
obtained by the initial approximated solution are shown in Figure 1. The
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Fig. 1 The online improvements of the initial approximated solutions for the instance
networks

largest improvement is 17.8157 for the instance network pr136; however, the
best competitive ratio is 1.1644 for st70. Also, for reverse direction the best
values of the improvement and the competitive ratio are respectively 17.2178
and 1.1417 both for berlin52.

6 Conclusions

This study considered the online symmetric travelling salesman problem. A
discrete time Markov chain with uniformly distributed transition probabilities
is established. Then, we applied the simulated annealing heuristic to improve
the computational capability of the algorithm. Other stochastic models and
decision criterion could be studied for future works.
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