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Abstract In this paper, a numerical solution of an inverse non-dimensional
heat conduction problem by spline method will be considered. The given heat
conduction equation, the boundary condition, and the initial condition are
presented in a dimensionless form. A set of temperature measurements at a
single sensor location inside the heat conduction body is required. The result
show that the proposed method can predict the unknown parameters in the
current inverse problem with an acceptable error.
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1 Introduction

Solving THCPs needs additional information about temperature history. This
new data is usually given by a temperature sensor which is located on the
boundary or inside the body. To date, various methods have been developed
for the analysis of the inverse problems and inverse heat conduction problems
involving the estimation of heat flux by measuring temperature inside the
material [3,2,18,6,15,16,7-9,5]. In this work, by using spline method, a stable
solution for an inverse heat conduction problem will be presented.
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A possible mathematical model for the temperature in the plate is a one
dimensional IHCP, is as follows, [3],

or  0°T

—_— == 0 1, 0<t<t 1

o Fek <z <l, <t<tmy, (1a)
T(x,0) = f(z), 0<z<1, (1b)
T(0,t) = p(t), 0<t<tu, (1c)
T(]-at) = Q(t)a 0<t<1tm, (1d)

and the overspecified condition

T(a,t) = g(t), 0<t<tuy, (le)

Where 0 < a < 1 is a fixed point, ¢y is a given constant. f(z) is the initial
temperature of rod, p(t) is the temperature at the left hand side and ¢(t)
is the temperature of the right hand side. In this context we consider that
the functions f(z), ¢(¢) are known functions, while T'(z,t) and p(t) are un-
known functions which remained. Note that, for an unknown function p(t) we
must therefore provide additional information (1le) to provide a unique solution
(T'(z,t),p(t)) to the inverse problem (1).

2 Overview of the Spline method

Consider an inverse diffusion problem described by the equations (1). The
application of the present numerical method will fined a solution of problem
(1), by using the following step.

2.1 Spline method for discretizing

Let A be a partition of the interval 0 < z < 1, which divides [0, 1] in to n sub
interval with the uniform step length h = % Let & > 0 be the time direction.
the grid points (4, j) are given by x; = ih,i = 0(1)n, t; = jk,5=0,1,2,.... Let
Tij be the approximate value of T'(z;, t;). we next develop an approximation for
(1) in which the time derivative is replaced by a finite difference approximation
an the space derivative is replaced by the spline approximation [17]. Let n be

a positive integer, denote

aT(I’ut) 82T(l‘1,t)
Tp(zi,t) = TJ,TM(%%) = Tja (2)
Sg(l‘q,,tj) = sz + O(h2), (3)

T 'Lat' T ’L'at' -T iat'
Ty(2i,t;) = MJt(xi,tj) _ Tlwirti) (@i, ;) +O0(k), (4)

ot
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At the grid point (x;,t;), the given differential equation (1) may be discretized
as
Tt(xiatj) - Tzz(xiatj)v (5)

By using (3), (4) in (5) we get
T(wi tj) = T(wi t;)
k

neglecting the truncation error we obtain

+O(k) = M} + O(h?), (6)

Tij+1 . T] )
=M, (7)
then we have . )
TR T
% - Mi]Jrl’ (8)
T Tl ,
% =M/ . (9)
Therefore the following, spline relation, is obtained
) ) ) 1 ) ) )
O‘M%]H +2BM] +aM]_, = ﬁ(j—;{‘rl — 2T + T} )), (10)

where j = 1(1)n — 1. substituting Egs. (7)-(9) in to (10), it finally obtained
the following schemes
QXTI + 2807 + o/ =
(X + DT/, + (26X — 2)T7 + (aX + 1TV, (11)
where A = 22 i = 1(1)n— 1, j = 0,1, ..,
Ocscd — 1 1 — Ocotl
o= 8= .

62 62

Equation (11) for ¢ = 1(1)n — 1 may be written in the following matrix form

ATj+1 = BT; + C}, (12)

26 ax ... 0 0 O
aX 26 ai... 0 O

A= : A
0 0 ......... a
0 0 ... 0 ar2BA
26A—=2 aXd+1 ... 0 O 0
aA+126A—-2ar+1... 0 0
B=| : S |
0 0 ooad+1

0 0 .0 aA+128A-2
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and _ _ _
Tj+1 = (leJrlvTQjJrlv 7Trjziri)a
Ty = (T,T,..,T ),
Cj = ((aA+ 1)p(jk) — arp((j + 1)K),0, ..., 0, (@A + 1)q(jk) — arq((j + 1)k)),

By choosing suitable values of parameters «, 8 we obtain various methods for
solution of inverse heat conduction problem (1).

Remark 1 In this work the polynomial from proposed for the unknown p(t)
before performing the calculation. Therefore p(t) approximate as

p(t) = ao + art + ast® + ... + a,t’, (13)

where ag, a1, ..., a, are constants which remain to be determined.

2.2 Least-squares minimization technique

The estimated coefficients as,s = 1, 2,...,7 can be determined by using least
square method when the sum of the squares of the deviation between the
calculated 77" and the measured g((j + 1)k) at © = a is less than a small

h
number. The error in the estimates E(ag, a1, ..., a,) can be expressed as

Blag,ar,na)) = S (T4 — g((G+ D)% i = 1,2, ..

=0

which is to be minimized for each interval ¢,,, 1 <t <t,,, m=1,2,.... M. To
obtain the minimum value of E(ag, a1, ..., a,), with respect to ag, a1, ..., a,, dif-
ferentiation of E(ag, a1, ..., a,), with respect to ag, a1, ..., a,, will be performed
[14]. Thus the linear system corresponding to the values of a, can be expressed
as

A0 =7,0 = (ap, a1, ...,q;), (14)

The Matrix A is ill-conditioned. On the other hand, as g is affected by mea-
surement errors, the estimate of p(t) by (14) will be unstable. Therefore, the
Tikhonov regularization method ([19], [13] and [14]) must be used to control
this measurement errors.

3 Numerical Results and Discussion

In this section, we are going to study numerically the inverse problems (1)
with the unknown boundary condition. The main aim here is to illustrate
the applicability of the present method, described in Sections 2 for solving
the inverse problem (1). As expected the inverse problems are ill-posed and
therefore it is necessary to investigate the stability of the present methods by
giving a test problem.
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Remark 2 In an inverse problem there are two sources of error in the estima-
tion; the first source is the unavoidable bias deviation, and the second source
of error is the variance due to the amplification of measurement errors, [10].

Therefore, we compare exact and approximate solutions by considering
total error S defined by

[

5= -], (15)

N
{=1

where N, p and p are the number of estimated values , the estimated values
and the exact values, respectively.

Ezample 1 In this example we solve the problem (1) with given data,
1
T(x,0) = 2(sin(2z) + cos(2z)) + Zac‘l, 0<z<1,

T(1,t) = 2e~*(sin(2) + cos(2)) + 3t* + 3t + 0.25, 0 <t < tp,
.0001
T(0.1,t) = 2¢*(sin 0.2 4 cos 0.2) + 3(+* + (0.01)t + %, 0<t<tpy.

The exact solution of this problem is

1
T(x,t) = 2e 4 (sin(2x) + cos(2x)) + 3(t* + ta? + Ex4).
and
p(t) = 2¢7* + 387, 0<t<ty,

Our results with Spline method obtained for (p(t), T'(x,t)) when ¢ty = 1, k =
0.002and h =0.1, « = %, 8= % by Tikhonov regularization and approximate
solution result from Duhamel’s [3] method by Tikhonov regularization with
noisy data are presented in Tables 1 and 1 and and Figures , , , ;

t p(t), p(t), p(t),

t Exact cubic spline scheme | Duhamel’s scheme
(0.100000) | (1.370640) (1.371471) (1.370641)
(0.200000) | (1.018658) (1.014504) (1.018660)
(0.300000) | (0.872388) (0.871520) (0.872388)
(0.400000) | (0.883793) (0.881676) (0.883785)
(0.500000) | (1.020671) (1.021552) (1.020665)
(0.600000) | (1.261436) (1.267904) (1.261436)
(0.700000) | (1.591620) (1.597091) (1.581620)
(0.800000) | (2.001524) (1.999244) (2.001424)
(0.900000) | (2.484647) (2.479174) (2.487347)
(1.000000) | (3.036631) (3.040551) (3.035531)

| S | 1.2e — 003 | 6.2¢ — 002 |

Table 1. The comparison between exact and cubic spline solution and
Duhamel’s scheme of p(t) with noisy data.
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t Exact cubic spline scheme | Duhamel’s scheme
T7(0.5,1) T(0.5,1) T7(0.5,1)

(0.100000) | (1.973086) (1.979823) (1.946453)
(0.200000) | (1.527367) (1.527793) (1.499955)
(0.300000) | (1.342989) (1.342851) (1.328802)
(0.400000) | (1.353575) (1.350897) (1.349223)
(0.500000) | (1.514630) (1.513900) (1.516022)
(0.600000) | (1.796328) (1.795653) (1.801043)
(0.700000) | (2.178676) (2.170030) (2.184406)
(0.800000) | (2.648273) (2.649084) (2.655631)
(0.900000) | (3.196135) (3.195401) (3.203425)
(1.000000) | (3.816241) (3.815907) (3.825544)

S 1.6e — 003 1.5e — 002

Table 2. The comparison between exact and cubic spline solution and
Duhamel’s scheme of T(x,t) with noisy data.

variable of p(t)
T T

35 |

T
*  p(t) Exact
m—n)(t) Spline

p(t)

Figure 1. Comparison between the exact results of p(t) and the present
numerical results of example 4.1 with noisy data.
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variable of p(t)
T

3.5

p(t)

0.5 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2. Comparison between the exact results of p(t) and the present
numerical results of example 4.1 with noisy data.

variable of T(x,t)

x,t) Exact
T(x,t) Spline

t

Figure 3. Comparison between the exact results of T(x,t) and the present
numerical results of example 4.1 with noisy data.
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— T(,t) EXaCt
X T(x%) Duhamel

x t

Figure 4. Comparison between the exact results of T(x,t) and the present
numerical results of example 4.1 with noisy data.

4 Conclusion

A numerical method to estimate unknown boundary condition is proposed for
these kinds of IHCPs and the following results are obtained:

1. The present study successfully applies the numerical method to IHCPs.

2. Numerical results show that an excellent estimation can be obtained within
a couple of minutes CPU time at pentium(R) 4 CPU 3.20 GHz.

3. The present method has been found stable with respect to small perturba-
tion in the input data.
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