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A hybrid algorithm for the path center problem
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Abstract Let a graph G = (V,E) be given. In the path center problem we
want to find a path P in G such that the maximum weighted distance of P
to every vertex in V is minimized. In this paper a genetic algorithm and a
hybrid of genetic and ant colony algorithms are presented for the path center
problem. Some test problems are examined to compare the algorithms. The
results show that for almost all examples the hybrid method results better
solutions than genetic algorithm.
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1 Introduction

Let G = (V,E) be a graph with vertex set V and edge set E. The vertices of
the graph model clients. We attach a positive weight wi, the demand of client
i, to every vertex vi. Every edge e = [vi, vj ] has a (positive) length c(e). The
length of a shortest path from vertex vi to vertex vj is denoted as d(vi, vj). In
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the path center problem we want to find a path P in G such that the maximum
weighted distance of every vertex in G to P is minimized.

Hakimi et al. [12] showed that the path center problem on general network
is NP-hard. In the case that the network is a tree Hedetniemi et al. [13] and
Slater [17] presented linear time algorithms to solve the problem. For this case
when the path has a specified size Minieka [15] proposed a linear time algo-
rithm. For a complete survey on path-location problems the reader is referred
to Labbe et al. [14].

In this paper we develop a genetic algorithm and a combination of genetic
and ant colony algorithm to approach the optimal solution of the path center
problem on a graph.

Genetic algorithms (GAs) are search heuristic methods for solving combi-
natorial optimization problems. They begin with a feasible solution and seek
to improve upon it. GAs were first invented by John Holland in the 196Os,
but they have become popular in the operations research literature more re-
cently. Specially many genetic algorithms are applied to solve some location
problems such as median problem and hub location problem(e.g. see [1,4,9,
18]). For more details about genetic algorithms the reader is referred to the
books by Goldberg [11] and Reeves [16].

Ant colony optimization(ACO) was proposed by Dorigo et al. [7] to solve
some difficult combinatorial optimization problems such as the traveling sales-
man problem and the quadratic assignment problem. The ACO algorithm also
was successfully used to tackle some other difficult problems such as the vehicle
routing, graph coloring, sequential ordering, job-shop scheduling and location
problems (see e.g. Bonabeau et al. [3], Dorigo and Di Caro [5], Dorigo and
Stützle [8], Fathali et al. [10] and Zaferanieh and Fathali [19]).

In what follows we define the path center problem in Section 2. A short
description of the genetic algorithm and discuss our special implementation of
this algorithm for the path center problem are given in Section 2. In Section
3 a hybrid genetic and ant colony algorithm is presented to solve path center
problem. Computational results are presented in Section 4. Section 5 contains
a summary and conclusions.

2 The problem definition

Let G = (V,E) be a graph with V , |V | = n, the set of vertices and E the set of
edges. Every edge with the end vertices u and v is presented by euv and every
vertex vi ∈ V has a real weight w(vi) that for simplicity we use wi. d(u, v)
is the length of the shortest path between vertices u and v and d(P, v) is the
length of the shortest path between path P and vertex v i.e.

d(P, v) = min
u∈P

d(u, v). (1)
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The path center problem asks to find a path P such that the following
function is minimized

F (P ) = max
i=1,...,n

wid(P, vi). (2)

Note that a Hamiltonian path in a graph G is a path which visits each
vertex of G exactly once. Thus if there is a Hamiltonian path on the given
graph, our objective function is equal to zero since all vertex i ∈ V is in the
path, and consequently the maximum distance of each vertex i ∈ V to the path
itself is minimized and it is equals zero. Therefore in this case the Hamiltonian
path is also a path center.

3 The genetic algorithm

In this section we present a genetic algorithm for the path center problem on
a network.

In the GAs each chromosome corresponds to a solution for the problem.
The measure of quality of a solution is called fitness. A genetic operator called
crossover is used to produce new chromosomes from a pair of selected chro-
mosomes. Mutations are used to promote genetic diversity.

3.1 Encoding

In our encoding each chromosome has k = |P | genes where each gene corre-
sponds to the index of a vertex in the selected path P . For example, [4, 5, 2, 11, 15]
is a chromosome corresponds to a feasible solution for a problem which is a
path from vertex v4 to v15 that passes the vertices v5, v2 and v11. Note that
in our algorithm the number of genes may not be equal for two different chro-
mosomes.

3.2 Fitness evaluation

The fitness of a chromosome is given by the objective function value of the
corresponding solution for the path center problem.

3.3 Population

The population size and the initial population are two effective factors on the
convergence of the algorithm. Large populations slow down the GA while small
population may not have sufficient genetic diversity to search over the feasible
region. In our algorithm we set n as the population size. Selecting a suitable
initial population results fast convergence for the algorithm. To achieve a near
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optimal solution the initial population should be distributed on the whole
feasible region and every gene must be presented in the initial population.

We construct n initial paths. To select members of initial population, we
start with each of n vertices and move to the adjacent vertices in random.
This rule follows until we can not move to any new vertex. Note that however
selection vertices with high degrees instead of randomly choosing vertices can
be a good idea but it caused reduction in the diversity of the population.
Procedure Initial can be used to generate the initial population.

Procedure [Initial]
Set S := ∅.
For each vertex v ∈ V do the following

1. P (v) := v, EndP := v.
2. While Adj := {u ∈ V |u ̸∈ P (v), u is adjacent to EndP} is not empty do

the following
(a) Select randomly a vertex u ∈ Adj.
(b) Add u to P (v).
(c) EndP := u.
End While.

3. S := S ∪ {P (v)}

End For.

3.4 Selection

To generate new members, we select the member of population with best fitness
as the first parent and the second one is chosen randomly from the population.
Other methods such as selecting members with better fitness as the parents,
selecting both parents randomly or selecting parents with maximum number
of genes, can be used. However, our computational experiments showed that
this method did not yield better results.

3.5 Generating new members

In a GA the chromosomes of two parents are merged to generate new members
(children). Usually by using a crossover the chromosomes of the parents are
split into two parts and then combined to generate two new members. Instead
of this traditional crossover operation we use the following method to generate
a new member. We select the genes that are present in both parents, as a part
of genes of the new member. However this part my not be a connected path,
so to construct a connected path we should add some vertices to this part. Let
P be the set of selected vertices, and u and v be the two members of P such
that euv ̸∈ E and v lies immediately after u in P . We should construct a path
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from u to v and add it to P . If by adding the shortest path between u and v to
P , P does not contain any cycle we add this shortest path to it. Otherwise the
path which is joining u and v in the parent that have better fitness is added
to P . In this case if we had a cycle in P we would delete the vertex v and all
other vertices after it in P that they constitute a subpath from v. We repeat
this rule until the vertices in P make a path.

Then we extend the path from the last vertex by adding one vertex at
a time until we can not add a new vertex to the path. In each iteration the
vertex t which is adjacent to the last vertex u is selected from the parents
probabilistically, with respect to the degree of v and amount of its improvement
in the fitness. Let P be the current path, P1 and P2 the parents of P , FP the
fitness of P , f(v) amount of improvement in the fitness by adding v to the
path, deg(v) the degree of v, dmax the degree of the vertex with maximum
degree in the network and

g(v) = α
deg(v)

dmax
+ (1− α)

f(v)

F (P )
(3)

where 0 ≤ α ≤ 1 is a parameter. Let

V1 =

{
v| v ∈ P1 ∪ P2 , v is adjacent to u and by adding it to P,
P does not contain any cycle

}
then the vertex t is selected to add the path P by using the following proba-
bility function

p(t) :=
g(t)∑

x∈V1
g(x)

. (4)

3.6 Mutation

The mutation operator helps the GA to escape from local optimum. To perform
mutation, after generating a new member, we extend the new path from two
sides of the path by adding a vertex at a time to each side until can not be
added a new vertex. To add a new vertex in each iteration we select the new
vertex v which is adjacent to the last vertex u. The rule of selecting this vertex
is the same as the method of extending path in the section of generating new
members.

3.7 Replacement

After generating a member and implementing the mutation operator, we should
admit this member to the population. If the new member is not identical to
an existing member and its fitness value is better than the worst fitness value
in the population, then the worst member is replaced by the new one.
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3.8 Stopping condition

The stopping rule is usually either the number of iterations, maximum number
of iterations after last improvement, or a maximum CPU time. Our algorithm
terminates when it repeats n iterations after last improvement and the best
solution has not changed.

3.9 The algorithm

The ideas of the previous sections lead to the following algorithm.

Algorithm [GAPCP].
Initialization:
Generate an initial population R of size n by running procedure Initial (see
Section 3.3).
Find the best member and its fitness value, fbest and the worst member and
its fitness value, fworst in the R.
Iteration counter r := 0, rbest := 0.
Iteration step:
While r − rbest ≤ n do the following:

1. r := r + 1,
2. Let P1 be the member of R with best fitness and select P2 randomly from

R.
3. Generate a new member:

(a) Set the common edges in P1 an P2 to Pnew.
(b) For any two vertices u and v that cause a disconnection in Pnew do the

following:
i. Find the shortest path Puv from u to v.
ii. If by adding Puv to Pnew, Pnew does not contain any cycle insert

it to Pnew.
else If by adding the path which is joining u and v in P1 to Pnew,
Pnew does not contain any cycle insert this path to Pnew.
else delete v and all vertices after it in Pnew that they constitute a
subpath from v.

(c) Let x be the end vertex of Pnew.
(d) Until we can add a vertex to Pnew such that Pnew remains a path do

the following:
i. For any vertex y ∈ P1 ∪ P2 \ Pnew adjacent to x calculate g(y)

according to the equation 3 and select vertex t by using probability
function 4.

ii. Add t to the end of Pnew.
iii. Set x = t.

4. Mutation:
(a) Let x1 and x2 be the first and the last vertex of Pnew, respectively.
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(b) Until we can add a vertex to Pnew such that Pnew remains a path do
the following for x = x1, x2:
i. For any vertex y ∈ G \Pnew adjacent to x calculate g(y) according

to the equation 3 and select vertex t by using probability function
4.

ii. Add t to Pnew.
iii. Set x = t.

5. If the generated member is not in the population and F (Pnew) < fworst

then do the following:
(a) Replace the worst member by the generated member.
(b) Update the worst member of the population and its fitness value, fworst.
(c) If F (Pnew) < fbest, set fbest = F (Pnew) and rbest = r.

endwhile

4 The hybrid algorithm

In this section we present a hybrid algorithm for path center problem which
is a combination of genetic and ant colony algorithms.

Ant colony algorithms are inspired by the behavior of ants in the real world.
They are improvement methods which try to approach optimal solution using
information obtained by previous solutions. While ants walk from food sources
to the nest and vice versa deposit a substance called pheromone on the ground
and form in this way a pheromone trail. Ants can smell pheromone and choose
the path with the strongest pheromone trail in probability among many paths
toward sources or nest.

Our hybrid algorithm is based on genetic algorithm. In the generating
new members and mutation steps we use a memory and pheromone to select
and add a new vertex to the path. In this algorithm after generating initial
population we assign an amount of pheromone τ to each edge of any initial
path according to the fitness of the path. Let P1, ..., Pn be the members of
initial population. For each edge euv we set

τ(euv) =
∑

{Pi|euv∈Pi}

1

F (Pi)
. (5)

Then in each iteration the pheromone of every edge euv ∈ Pnew is updated as
follows:

τ(euv) = ρ
1

F (Pnew)
+ (1− ρ)τ(euv) (6)

where ρ ∈ [0, 1] is a parameter governing pheromone decay called evaporation
coefficient.

In the steps generating new members and mutation of hybrid algorithm to
add a new vertex to any side of Pnew instead of selecting vertex by genetic
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method we select the edge euv using the following probability function

p(euv) :=
τ(euv)∑

exy∈A τ(exy)
(7)

where A is the set of vertices that can be added to Pnew.
Now the hybrid algorithm can be written as follows:

Algorithm [GACPCP].
Initialization:
Generate an initial population R of size n by running procedure Initial.
Find the best member and its fitness value, fbest and the worst member and
its fitness value, fworst in the R.
Let R = {P1, ..., Pn}, for any edge euv set τ(euv) =

∑
{Pi|euv∈Pi}

1
F (Pi)

.

Iteration counter r := 0, rbest := 0.
Iteration step:
While r − rbest ≤ n do the following:

1. r := r + 1,
2. Let P1 be the member of R with best fitness and select P2 randomly from

R.
3. Generate a new member:

(a) Set the common edges in P1 an P2 to Pnew.
(b) For any two vertices u and v that cause a disconnection in Pnew do the

following:
i. Find the shortest path Puv from u to v.
ii. If by adding Puv to Pnew, Pnew does not contain any cycle insert

it to Pnew.
else If by adding the path which is joining u and v in P1 to Pnew,
Pnew does not contain any cycle insert it to Pnew.
else delete v and all vertices after it in Pnew that make a connected
subpath.

(c) Let x be the end vertex of Pnew.
(d) Until can be added a vertex to Pnew such that Pnew remains a path do

the following:
i. Select a vertex y ∈ P1 ∪ P2 \ Pnew adjacent to x by using the

probability function 7 and add it to the end of Pnew.
4. Mutation:

(a) Let x1 and x2 be the first and the last vertex of Pnew, respectively.
(b) Until can be added a vertex to Pnew such that Pnew remains a path do

the following for x = x1, x2:
i. Select a vertex y ∈ G \ Pnew adjacent to x using the probability

function 7 and add it to the Pnew.
5. If the generated member is not in the population and F (Pnew) < fworst

then do the following:
(a) Replace the worst member by the generated member.
(b) Update the worst member of the population and its fitness value, fworst.
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(c) Update pheromone of each edge euv ∈ Pnew by using equation 6.
(d) If F (Pnew) < fbest, set fbest = F (Pnew) and rbest = r.

endwhile

5 Computational results

We test the GAPCP and GACPCP for fifteen test problems (p-median in-
stances) from the ORLIB library, see Beasley [2].

Both methods are coded in C++ and run on a Pentium IV with 3600
MHz CPU and 512 megabytes of RAM. We ran 5 times each method for all
problems.

In the Table 1 we present the results of GAPCP and GACPCP algorithms.
In this table the column last improvement iteration indicates the number of
iteration after which no improvement in the solution is attained. The last
columns of the table show the CPU time of the algorithms per iteration.

We ran the GAPCP for all the problems with α = 0, 0.5, 1 (see equation
3). The best solutions were found for α = 0.5. The GACPCP algorithm was
performed for all the problems with ρ = 0.2, 0.5, 0.6, 0.75, 0.9 (evaporation
coefficient) and the best solutions were obtained by ρ = 0.5.

Table 1 The results for the test problems

Objective function Last improv. iter. CPU/Iter (sec)
Test # n Edge NO. GACPCP GAPCP GACPCP GAPCP GACPCP GAPCP
pmed1 100 200 59 60 251 138 0.136 0.104
pmed2 100 200 33 68 281 179 0.142 0.123
pmed3 100 200 42 72 487 176 0.140 0.125
pmed4 100 200 55 91 425 101 0.133 0.109
pmed5 100 200 54 77 330 101 0.123 0.100
pmed6 200 800 21 24 597 201 0.404 0.388
pmed7 200 800 32 38 437 209 0.364 0.259
pmed8 200 800 27 38 327 473 0.432 0.281
pmed9 200 800 20 38 246 278 0.427 0.396
pmed10 200 800 23 34 510 317 0.410 0.376
pmed11 300 1800 20 29 467 301 0.891 0.712
pmed12 300 1800 20 30 594 441 0.879 0.832
pmed13 300 1800 30 30 567 351 0.931 1.000
pmed14 300 1800 20 33 694 301 0.880 1.019
pmed15 300 1800 16 16 512 321 0.893 1.095

For five test problems, (pmed4, pmed5, pmed6, pmed11 and pmed14)
the GAPCP does not improve the best solution, whereas the GACPCP im-
proves the solution of all problems. The results show that for all problems the
GACPCP obtained better solutions than GAPCP.
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6 Summary and conclusion

In this paper we proposed a genetic algorithm and a hybrid of genetic and ant
colony algorithm to solve the path center problem on a network. The results
show for almost all examples the hybrid method results better solutions than
genetic algorithm.
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