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Abstract In this study, we aim to construct a traveling wave solution for non-
linear partial differential equations. In this regards, a cosine-function method
is used to find and generate the exact solutions for three different types of
nonlinear partial differential equations such as general regularized long wave
equation (GRLW), general Korteweg-de Vries equation (GKDV) and general
equal width wave equation (GEWE) which are the major soliton equations.
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1 Introduction

From both theoretical and practical points of view, the investigation and study
of numerical approaches for the solution of different differential equations has
been an intense period of activity over the last 50 years. Many modifications
in numerical techniques and algorithms, together with the rapid advances in
computer technology, have meant that many of the partial differential equa-
tions arising from engineering and scientific applications, which were previ-
ously intractable, can now, be easily solved [1]. Foe example, the well-known
finite difference methods can approximate the differential operators and ac-
cordingly it can solve the difference equations. In fact, in finite element method
the continuous domain is represented as a collection of a finite number N of
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subdomains known as elements. The collection of elements is called the fi-
nite element mesh. For time dependent problems, the differential equations
are approximated by the finite element method to obtain a set of ordinary
differential equations in time. These differential equations are solved approx-
imately by finite difference methods or other methods. In all finite difference
and finite elements it is necessary to have a boundary and initial conditions.
But the Adomian decomposition method, which has been developed by George
Adomian [2] depends only on the initial conditions to obtain solution in series
form which almost converges to the exact solutions of the problem.

The main goal of this paper is to apply the cosine-function method to
obtain the exact solutions for the three different types of nonlinear partial
differential equations like general regularized long wave equation GRLW, gen-
eral Korteweg-de Vries equation GKDV, general equal width wave equation
GEWE, which are all the significant soliton equations.

2 A brief survey on the method

Consider the nonlinear partial differential equation in the form

F (u, ut, ux, uy, utt, uxx, uxy, uyy, . . . ) = 0, (1)

where u(x, y, t) is a traveling wave solution of nonlinear partial differential
equation (1). We use the transformations,

u(x, y, t) = f(ξ), (2)

where ξ = x+ y − ct. This enables us to use the following changes

∂

∂t
(.) = −c

d

dξ
(.),

∂

∂x
(.) =

d

dξ
(.),

∂

∂y
(.) =

d

dξ
(.), . . . (3)

using Eq. (3) to transfer the nonlinear partial differential equation Eq. (1) to
nonlinear ordinary differential equation

Q(f, f ′, f ′′, f ′′′, . . . ) = 0. (4)

The ordinary differential equation (4) is then integrated as long as all terms
contain derivatives, where we neglect the integration constants.
The solutions of many nonlinear equations can be expressed in the form

f(ξ) =

λ cosβ(µξ) |ξ| 6 π

2µ
,

0 otherwise.
(5)

Where λ, µ and β are parameters to be determined, µ and c are wave number
and wave speed, respectively. we use

f(ξ) = λ cosβ(µξ),



On the Exact Solution for Nonlinear Partial Differential Equations 75

f ′(ξ) =
df(ξ)

dξ
= (6)

−λβµ cosβ−1(µξ) sin(µξ),

f ′′(ξ) =
d2f(ξ)

dξ2
=

−λβµ2 cosβ(µξ) + λµ2β(β − 1)cosβ−2(µξ)− λµ2β (β − 1) cosβ(µξ).

...

Substituting Eq. (6) in to the nonlinear ordinary differential equation Eq.
(4) gives a trigonometric equation of cosα(µξ) terms. The exponents of each
pair of cosine to determine α.

Then we collect all terms with the same power in cosβ(µξ) and put to zero
their coefficients to get a system of algebraic equations among the unknowns
β, λ and µ. Now the problem is reduced to a system of algebraic equations
that can be solved to obtain the unknown parameters β, λ and µ. Hence,
the solution considered in Eq. (5) is obtained. The above analysis yields the
following theorem

Theorem 1 The exact analytical solution of the nonlinear partial differential
equation (1) can be determined in the form Eq. (5) where all constants found
from the algebraic equations after it’s solutions.

3 Experimental Results and Applications

In this section in order to illustrate the effectiveness of the method three
different examples in mathematical are chosen as follows

Example 1 The general regularized long wave equation (GRLW)
Let us first consider the following problem: find functions u(x, t) satisfying the
equation in the form

ut + ux + ε up ux − vuxxt = 0. (7)

By using the wave variable ξ = x− ct and u(x, t) = f(ξ) than the equation
(7) becomes

−cf ′ + f ′ + εfpf ′ + cvf ′′′ = 0. (8)

Since all the terms in (8) contain derivatives, integrating it once, we get

(1− c)f +
ε fp+1

p+ 1
+ cvf ′′ = 0. (9)

We substitute equation (6) to (9) to obtain

(1− c)λ cosβ(µξ) +
ε

p+ 1
(λp+1 cosβ(p+1)(µξ))− cvλβµ2 cosβ(µξ) (10)
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+cvλµ2β (β − 1) cosβ−2 (µξ)− cvλµ2β (β − 1) cosβ (µξ) = 0.

By equating the exponents and the coefficients of each pair of the cosine func-
tions, we get the following system of algebraic equations

(p+ 1)β = β − 2,

(1− c)λ− cvλβµ2 − cvλµ2β (β − 1) = 0, (11)

ελp+1

p+ 1
+ cvλµ2β (β − 1) = 0.

Using Mathematica, we solve this system of equations and thereby obtain

β =
−2

p
,

µ = ±p
√
1− c

2
√
vc

, (12)

λ = 2−
1
p (

−2 + 2c− 3p+ 3cp− p2 + cp2

ε
)

1
p .

Finally substituting equation (12) in to equation (5), we get

u(x, t) = 2
−1
p (

−2 + 2c− 3p+ 3cp− p2 + cp2

ε
)

1
p cos

−2
p (±p

√
1− c

2
√
vc

(x− ct)),

(13)
which is the exact soliton solution of the GRLW equation.

Example 2 The general Korteweg-de Vries (GKDV) Equation
In this example, we consider the traveling solution for equation takes the form

ux + ε upux + γ uxx = 0. (14)

We follow the same procedures as applied in to the previous example (1) and
obtain the following system of equations

(p+ 1)β = β − 2,

−cλ− γλβµ2 − γλµ2β (β − 1) = 0, (15)

ελp+1

p+ 1
+ γλµ2β (β − 1) = 0.

Now we use Mathematica to solve this system of algebraic equations to obtain

β = −2

p
,

µ = ± ip
√
c

2
√
γ
, (16)

λ = 2−
1
p (

c(2 + 3p+ p2)

ε
)

1
p ,



On the Exact Solution for Nonlinear Partial Differential Equations 77

substituting the equation (16) in to equation (5), we get

u(x, t) = 2−
1
p (

c(2 + 3p+ p2)

ε
) cos−

2
p (± ip

√
c

2
√
γ
(x− ct)) (17)

which is the exact soliton solution of GKDV.

Example 3 Finally, we consider the general equal width wave equation (GEWE).

ut + εupux − vuxt = 0. (18)

By using the wave variable ξ = x − ct and u(x, t) = f(ξ), the GEWE is
transformed in to

−c
df(ξ)

dξ
+ εfp(ξ)

df(ξ)

dξ
+ cv

d3f(ξ)

dξ3
= 0. (19)

Since all the terms contain derivatives, integrating once equation (19) gives,

−cf(ξ) +
ε

p+ 1
(f(ξ))p+1 + cv

d2f(ξ)

dξ2
= 0. (20)

Substituting equation (6) in to equation (20), we get

− cλ cosβ(µξ) +
ε

p+ 1
(λp+1 cosβ(p+1)(µξ))− cvλβµ2 cosβ(µξ)

+ cvλµ2β (β − 1) cosβ−2 (µξ)− cvλµ2β (β − 1) cosβ (µξ) = 0. (21)

Equating the exponents of cosine functions and the coefficients,

(p+ 1)β = β − 2,

−cλ− γλβµ2 − γλµ2β (β − 1) = 0, (22)

ελp+1

p+ 1
+ γλµ2β (β − 1) = 0.

(22)is a sistem of algebraic equations.
Using mathematica package for symbolic calculation, the system (22) is solved
to obtain

β = −2

p
,

µ = ± ip
√
c

2
√
γ
, (23)

2−
1
p

(c(2 + 3p+ p2)

ε

) 1
p

.

Finally we substitute equation (22) in to equation (5) and thereby obtain

u(x, t) = 2−
1
p

(c(2 + 3p+ p2)

ε

)
cos−

2
p

(
± ip

√
c

2
√
γ
(x− ct)

)
. (24)
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Corollary 1 In this work, the cosine-function method has been successfully
applied to find the solution for three nonlinear partial differential equations
such as GRLW, GKDV and GEWE equations. The cosine-function method is
used to find a new exact solution. Therefore, we can say the proposed method
can be exact to solve the problems of nonlinear partial differential equations
arising in to the theory of solitons and other areas.
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