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Abstract In this paper we are supposed to define the θ−vector field on the
n−surface S and then investigate about the existence and uniqueness of its
integral curves by the Theory of Ordinary Differential Equations. Then the
subject is followed through some examples.
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1 Introduction

Various generalizations of the existence and uniqueness theorems of the inte-
gral curves of smooth vector fields have been proposed as well as improvement
of the sets that vector fields are defined on them. For example, if U ⊆ Rn is an
open subset and f : U → Rn+1 is locally Lipchitz, that is around each point
there is a ball on which f is bounded and satisfies Lipchitz condition, then for
each x ∈ U there is a unique α : I → U for some interval I containing 0 such
that α′(t) = f(α(t)) and α(0) = x [4].
If S is a regular surface and U ⊆ S is an open set and χ is a smooth tangent
vector field defined on U , then the integral curve, and the similar theorem
above extend to the present situation; up to change of Rn+1 by S [1].
Smooth vector fields on n−dimensional Manifolds are discussed in [2]. The
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straightforward conclusion of this subject which is a consequence of the sim-
ilar results in Rn+1 is the existence and uniqueness theorem for the integral
curves defined on manifolds.
What is still missing is the concept and properties of a θ−vector field defined
on an n−surface, that is, how the integral curve of a given θ−vector field must
be related to the S, or what is the differential equation which this kind of
vector field must be satisfied in it.
In this paper, we propose a definition of an n−surface S, and a smooth
θ−vector field on S, as a generalization of the concepts within the contexts
of M. do Carmo and M. Spivak. In the second section, we recall various def-
initions and theorems related to this subject which will be used later. In the
third section, the basic theorems are proved, and at last some examples and
conclusions are given respectively in Secs. 4 and 5.

2 Preliminaries

Definition 1 A parameterized curve is a smooth function α : I → Rn+1 for
some open interval I, and an n−surface is a non empty subset S of Rn+1 for
some n ∈ N of the form S = f−1(c) where f : U → R, U open in Rn+1, is a
smooth function with the property that ∇f(p) ≠ 0 for all p ∈ S.

Definition 2 A vector field χ on an n−surface S ⊆ Rn+1 is a function which
assign to each point p ∈ S a vector χ(p) ⊆ Rn+1

p .

Definition 3 If cos̸ (χ(p),∇f(p)) = sinθ for some 0 ≤ θ ≤ π
2 and each

p ∈ S, then χ is said a θ−vector field on S.

Definition 4 Let S be an n−surface in Rn+1. A function g : S → Rk is
smooth if it is the restriction to S of a smooth function g̃ : V → Rk defined
on some open set V consisting S. A smooth vector field is defined similarly.

Theorem 1 Let χ be a smooth vector field on an open set U ⊆ Rn+1 and let
p ∈ U . Then there exists an open interval I containing 0 and a parameterized
curve α : I → U such that,

1. α(0) = p,
2. α̇(t) = χ(α(t)) for all t ∈ I,
3. If β : Ĩ → U is any other parameterized curve in U satisfying 1 and 2 ,

then Ĩ ⊆ I and β(t) = α(t) for all t ∈ Ĩ.

3 Main Results

Theorem 2 Let S be an n−surface, χ be a smooth θ−vector field on S and
p ∈ S. Then there exists an open interval I containing 0 and a parameterized
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curve α : I → Rn+1 such that α(0) = p, α̇(t) = χ(α(t)) for all t such that
α(t) ∈ S and

f(α(t))− f(p) = sinθ

∫ t

0

∥∇f(α(t)∥∥χ(α(t))∥dt (1)

for all t ∈ I. Moreover χ has an extension χ̃ for which α satisfies the following
differential equation

α̇(t) = χ̃(α(t))− χ̃(α(t)) · ∇f(α(t))

∥∇f(α(t))∥2
∇f(α(t))+sinθ

∥χ̃(α(t))∥
∥∇f(α(t))∥

∇f(α(t)) (2)

In particular if α(t) ∈ S then

cos̸ (α̇(t),∇f(α(t)) = sinθ (3)

Proof Since χ is smooth, there exists an open set V containing S and a smooth
vector field χ̃ such that

χ̃(q) = χ(q),∀q ∈ S (4)

Let f : U → R and c ∈ R be such that S = f−1(c), and ∇f(q) ̸= 0 for all
q ∈ U . Let

W = {q|q ∈ U ∩ V,∇f(q) ̸= 0} (5)

Then W is an open set containing S and both χ̃ and f are defined on W . Let
Y be the vector field on W defined by

Y (q) = χ̃(q)− χ̃(q) · ∇f(q)

∥∇f(q)∥2
∇f(q) + sinθ

∥χ̃(q)∥
∥∇f(q)∥

∇f(q) (6)

Then Y is a smooth vector field for which Y (q) = χ̃(q) for all q ∈ S and

∇f(q) · Y (q) = sinθ∥χ̃(q)∥∥∇f(q)∥ (7)

for all q ∈ W . According to the Theorem 1, let α : I → W be a maximal
integral curve of Y through p, i.e., α(0) = p, α̇(t) = Y (α(t)) for all t ∈ I. Let

g(t) = (f ◦ α)(t)− sinθ

∫ t

0

∥∇f(α(t)∥∥χ̃(α(t))∥dt (8)

for all t ∈ I, then

g′(t) = ∇f(α(t)) · Y (α(t))− sinθ∥∇f(α(t)∥∥χ̃(α(t)∥ = 0 (9)

for all t ∈ I and
g(0) = (f ◦ α)(0) = f(p) = c (10)

Moreover

α̇(t) = Y (α(t)) = χ̃(α(t))− χ̃(α(t)) · ∇f(α(t))

∥∇f(α(t))∥2
∇f(α(t))

+sinθ
∥χ̃(α(t))∥
∥∇f(α(t))∥

∇f(α(t)) (11)

Now (4), (7), (9), (10) and (11) imply the Theorem.
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Theorem 3 Let S be an n−surface, χ be a smooth tangent vector field on S,
and p ∈ S. Then there exists an open interval I containing 0 and a parame-
terized curve α : I → S such that,

1. α(0) = p,
2. α̇(t) = χ(α(t)),

3. If β : Ĩ → S is any other parameterized curve in S satisfying β(0) = p,
β̇(t) = χ(β(t)) for all t ∈ Ĩ, then Ĩ ⊆ I and β(t) = α(t) for all t ∈ Ĩ.

Proof Let θ = 0, then χ is a tangent vector field on S and (1) implies that
f ◦ α(t) = c for all t ∈ I, therefore α(0) = p, α(t) ∈ S and (3) implies that

α̇(t) = χ(α(t)) for all t ∈ I. Now let β : Ĩ → S is any other parameterized
curve in S satisfying β(0) = p, β̇(t) = χ(β(t)) for all t ∈ Ĩ then sinθ = 0 and
β is the integral curve of

Y (q) = χ(q)− χ(q) · ∇f(q)

∥∇f(q)∥2
∇f(q) + sinθ

∥χ̃(q)∥
∥∇f(q)∥

∇f(q) (12)

This is a system of n + 1 first order ordinary differential equations in n + 1
unknowns. So The uniqueness theorem for the solutions of such equations [3],
implies the theorem.

Theorem 4 Let 0 ≤ θ ≤ π
2 , then there exists an n−surface S and a smooth

θ−vector field on S.

Proof let C be the graph of a smooth map g : R → R+ and

f : R×R+ ×
(n−1)times︷ ︸︸ ︷

R× · · · ×R → R (13)

be defined by

f(x1, x2, ..., xn+1) =
√

x2
2 + · · ·+ x2

n+1 − g(x1) (14)

Then SC = f−1(0) is the n−surface of revolution obtained by rotating C about
the x1 axis. Let zi =

xi√
x2
2+...+x2

n+1

for 2 ≤ i ≤ n+1. Define the smooth vector

field χ on U = R×R+ ×
(n−1)times︷ ︸︸ ︷

R× · · · ×R by

χ(x1, x2, ..., xn+1) = (1, 0, ..., 0) (15)

We show that for any θ there exist a smooth map g such that the n−surface
of revolution obtained by rotating C about the x1 axis satisfies the theorem.
Since the unit normal of SC is

N(x1, x2, ..., xn+1) = (
−g′(x1)√

(g′(x1))2 + 1

,
z2√

(g′(x1))2 + 1
, ...,

zn+1√
(g′(x1))2 + 1

) (16)
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it follows from the Definition 3 that −g′(x1)√
(g′(x1))2+1

= sinθ and hence g′(x1) =

±tanθ. Thus g(x1) = ±x1tanθ+ ρ for some constant ρ ∈ R. Conversely, Let ℓ
be the half line in R2 with equation x2 = cx1 + ρ for some c, ρ ∈ R such that
x2 > 0. Define the function

f : R×R+ ×
(n−1)times︷ ︸︸ ︷

R× · · · ×R → R (17)

by

f(x1, x2, ..., xn+1) =
√
x2
2 + · · ·+ x2

n+1 − cx1 − ρ (18)

for n ≥ 2. Let Sℓ = f−1(0) and

yi =
xi

√
c2 + 1

√
x2
2 + · · ·+ x2

n+1

(19)

for 2 ≤ i ≤ n+1. It can be seen that Sℓ is an n−surface of revolution obtained
by rotating ℓ about the x1 axis with unit normal

N(x1, x2, ..., xn+1) = (
−c√
c2 + 1

, y2, ..., yn+1) (20)

Now the Definition 3 asserts that −c√
c2+1

= sinθ. Therefore c = ±tanθ and

x2 = ±x1tanθ + ρ.

4 Examples

Example 1 Let C be the n−cylinder

C = {(x1, x2, · · ·, xn, xn+1) ∈ Rn|x2
1 + x2

2 + · · ·+ x2
n = 1} (21)

Let x ∈ S, 0 ≤ θ ≤ π
2 and a > 0 be such that a = sinθ

√
a2 + 1. Let

χ(x) = (ax1, ..., axn,
√
x2
1 + ...+ x2

n) (22)

Then χ is a smooth θ−vector field on S and the components of its integral
curve α satisfies the following n+ 1 first order ordinary differential equations
in n+ 1 unknowns, 

α′
1(t) = aα1(t),

α′
2(t) = aα2(t),

.

.

.
α′
n(t) = aαn(t),

α′
n+1(t) =

√
α2
1(t) + ...+ α2

n(t)

(23)
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The solution of this system of equations through p = (p1, p2, ..., pn+1) is the
smooth curve α with components

α1(t) = p1e
at,

α2(t) = p2e
at,

.

.

.
αn(t) = pne

at,

αn+1(t) = pn+1 +
1
a (e

at − 1)
√
p21 + ...+ p2n

(24)

A simple calculation shows that cos̸ (α′(t),∇f(α(t)) = sinθ, Y = χ and so
the integral curve of Y is coming from (24). Moreover,

f(α(t))− f(p) = sinθ

∫ t

0

∥∇f(α(t)∥∥χ(α(t))∥dt = e2at − 1 (25)

Example 2 Let S be the (2n− 1)−sphere

x2
1 + x2

2 + · · ·+ x2
2n−1 + x2

2n = 1 (26)

Let x ∈ S and χ(x) = (−x2, x1, · · ·,−x2n, x2n−1), then χ is a smooth vector
field tangent to S. The requirement that a parameterized curve α be an integral
curve of χ implies that 

α′
1(t) = −α2(t),

α′
2(t) = −α1(t),

.

.

.
α′
2n−1(t) = −α2n(t),

α′
2n(t) = −α2n−1(t)

(27)

The solution of these pair of equations through p = (p1, p2, ..., p2n−1, p2n) is

α1(t) = p1cost− p2sint,
α2(t) = p1sint+ p2cost,
.
.
.
α2n−1(t) = p2n−1cost− p2nsint,
α2n(t) = p2n−1sint+ p2ncost

(28)

A simple calculation shows that

α2
2k−1(t) + α2

2k(t) = p22k−1 + p22k (29)

for k = 1, ..., n and so α with components α1, ..., α2n is the maximal integral
curve of χ which lies on S.
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5 Conclusion

1. For any n−surface S = f−1(c) and χ, a smooth θ−vector field on it, there
exists a vector field Y , which the value of f on an arbitrary point of its
integral curve is determined by θ, χ and ∇f ,

2. For any 0 ≤ θ ≤ π
2 there exists an n−surface S and a smooth vector field

χ, which is a θ−vector field on S,
3. Any smooth tangent vector field on S, has an integral curve which lies on

S,
4. The θ−vector field on an n−surface S through a point p ∈ S, in general is

not unique,
5. For any θ−vector field on an n−surface S, there exists a smooth curve α

through a point p ∈ S, which satisfies the integral and differential equations
(1) and (2),

6. For any 0 ≤ θ ≤ π
2 and any 1−surface S in an open set U ⊆ R2 with

smooth function f : U → R, satisfies the inequality ∂f
∂x2

cosθ− ∂f
∂x1

sinθ > 0
on U , there exists a smooth θ−vector field χ on S. In fact, for 0 < θ < π

2
let

χ = ((
∂f

∂x2
)2cos2θ − (

∂f

∂x1
)2sin2θ, ∥∇f∥2sinθcosθ − ∂f

∂x1

∂f

∂x2
) (30)

Then a simple calculation shows that

χ · ∇f = ((
∂f

∂x1
)2 +

∂f

∂x2
)2)(

∂f

∂x2
cosθ − ∂f

∂x1
sinθ)sinθ (31)

∥χ∥∥∇f∥ = ((
∂f

∂x1
)2 + (

∂f

∂x2
)2)(

∂f

∂x2
cosθ − ∂f

∂x1
sinθ) (32)

and so
cos̸ (χ(p),∇f(p)) = sinθ (33)

The claim in the cases θ = 0, π
2 is obvious.

7. Any smooth n−dimensional manifold M , has a smooth trivial tangent
vector field. The existence of non zero smooth tangent vector field on the
n−dimensional manifold M , can be proved by using the Partition of Unity
subordinate to a special cover of M [5,6].
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