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Abstract This paper presents a brief instructions to find geodesics equa-
tions on two dimensional surfaces in R3. The resulting geodesic equations are
solved numerically using Computer Program Matlab, the geodesics are dis-
played through Figures.
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1 Introduction

In an axiomatic approach to geometry we study the properties of points and
lines. Most of the theorems in axiomatic geometry deal with the relationships
between points and lines. If we are to see how the differential geometry we
have been studying is to relate to axiomatic geometry, we need some method
for developing an abstract definition of a line. This is different from our ax-
iomatic technique of taking a line as an undefined term. There are various
ways in which a straight line in usual Euclidean geometry can be character-
ized. For instance,it has zero curvature everywhere, all its tangent vectors are
parallel, or it is the solution of the simple first order linear differential equation
v′′(t) = v0 .
Neither of these characterizations can be immediately transferred to the case
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of curves within a Riemannian manifold but the following definition is gener-
alizable:A straight line between two points is the curve which minimizes the
distance between these points. Since in a Riemannian metric we have the no-
tion of length, we can use this to define what a straight line in a curved space
is. Such straight lines are called geodesics. Geometrically, a geodesic on a sur-
face is an embedded simple curve on the surface such that for any two-points
on the curve the portion of the curve connecting them is also the shortest path
between them on the surface. A different characterization of a geodesic is the
following: A curve on a surface is geodesic if and only if the normal vector to
the curve is everywhere parallel to the local normal vector of the surface. This
goes back to Johann Bernoulli (1697)!
Geodesic on a surface is an intrinsic geometric feature that plays an impor-
tant role in a diversity of applications. Many geometric operations are inher-
ently related to geodesics. For instance, when a developable surface is flat-
tened into a planer figure (with no distortion), any geodesic on it will be
mapped to a straight line in the planer figure [9]. Thus, to flatten an arbitrary
non-developable surface with as little distortion as possible, a good algorithm
should try to preserve the geodesic curvatures on the surface [1,2]. Geodesic
method also finds its applications in computer vision and image processing,
such as in object segmentation [5,6,16] and multi-scale image analysis [17,
18]. The concept of geodesic also finds its place in various industrial applica-
tions, such as tent manufacturing, cutting and painting path, fiberglass tape
windings in pipe manufacturing, textile manufacturing [3,4,10–14,21]. Avail-
able approaches for the computation of geodesic curves on surfaces can be
classified broadly as analytical reference [8] and numerical [19,15].

2 Main results

t: Unit tangent vector of C at P .
n: Unit normal vector of C at P .
N : Unit surface normal vector of S at P .
u: Unit vector perpendicular to t in the tangent plane defined by Nt.

We can decompose the curvature vector k of C into N component kn, which is
called normal curvature vector, and u component kg, which is called geodesic
curvature vector

k = kn + kg = −κnN + κgu

κn = −k ·N , κg = k · u

Consequently,

κg =
dt

ds
· (N × t)

Geodesic paths are sometimes defined as shortest path between points on a
surface, however this is not always a satisfactory definition.
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Fig. 1 Definition of geodesic curvature

Definition 1 Geodesics are curves of zero geodesic curvature [20].

The computation of geodesic curves

Let C is a geodesic curve on a surface r = r
(
u(s), v(s)

)
. Because the surface

normal N has the direction of principal normal n of C. Then, we can write

n · ru = 0 and n · rv = 0. (1)

The unit tangent vector of the curve C on the surface r is given by

dt

ds
= ruu

(
du

ds

)2

+ 2ruv
du

ds

dv

ds
+ rvv

(
dv

ds

)2

+ ru

(
d2u

ds2

)
+ rv

(
d2v

ds2

)
, (2)

Since kn = dt/ds , from Eqs. (1) and (2), we obtain

(ruu · ru)

(
du

ds

)2

+ 2(ruv · ru)
du

ds

dv

ds
+ (rvv · ru)

(
dv

ds2

)2

+ F

(
d2v

ds2

)
= 0,

(3)

(ruu · rv)

(
du

ds

)2

+ 2(ruv · rv)
du

ds

dv

ds
+ (rvv · rv)

(
dv

ds2

)
+G

(
d2v

ds2

)
= 0, (4)
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where E = ru ·ru , F = ru ·rv and G = rv ·rv are coefficient of first fundamental
form of the surface, and

Eu = 2ruu · ru , Ev = 2ruv · ru , Fu = rvu · ru + rv · ruu ,
Fv = rvv · ru + rv · ruv , Gu = 2ruv · rv , Gv2rvv · rv ,

Ev − 2Fu = −2ruu · rv , Gu − 2Fv = −2ru · rvv.

By eliminating d2v/ds2 from Eq.(3) have,

d2v

ds2
=

(
−

1

F

)
(ruu · ru)

(
du

ds

)2

+

(
−

2

F

)
(ruv · ru)

du

ds

dv

ds

+

(
−

1

F

)
(rvv · ru)

(
dv

ds

)2

+

(
−
E

F

)(
d2u

ds2

)
Now, using d2v/ds2 in Eq(4) obtain,

(
F −

EG

F

)(
d2u

ds2

)
+

[
(ruu · rv) −

G

F
(ruu · ru)

](
du

ds

)2

+

(
2(ruv · rv) −

2G

F
(ruv · ru)

]
du

ds

dv

ds

+

[
(rvv · rv) −

G

F
(rvv · ru)

](
dv

ds

)2

= 0

Thus

Γ 1
11 =

GEu + FEv − 2FFu

2(EG− F 2)
, Γ 2

11 =
−EuF − EEv + 2EFu

2(EG− F 2)

Γ 1
12 =

GEv − FGu

EG− F 2
, Γ 2

12 =
EGu − FEv

EG− F 2

Γ 1
22 =

−GGu + 2GFv − FGv

2(EG− F 2)
, Γ 2

22 =
FGu − 2FFv + EGv

2(EG− F 2)

And the geodesic equations become

d2u

ds2
+ Γ 1

11

(
du

ds

)2

+ Γ 1
12

du

ds

dv

ds
+ Γ 1

22

(
dv

ds

)2

= 0,

d2v

ds2
+ Γ 2

11

(
du

ds

)2

+ Γ 2
12

du

ds

dv

ds
+ Γ 2

22

(
dv

ds

)2

= 0,

These two second order differential equations can be rewritten as a system of
four first order differential equations [7].

du

ds
= p

dp

ds
= −Γ 1

11p
2 − Γ 1

12pq − Γ 1
22q

2

dv

ds
= q

dq

ds
= −Γ 2

11p
2 − Γ 2

12pq − Γ 2
22q

2

Then using the Matlab function file, we have the numerical solution for the
geodesic equations, if that is shown in the following example.
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Example

Example 1 bilinear surface r(u, v) = (u, v, uv).

Γ 1
11 = Γ 2

11 = Γ 1
22 = Γ 2

22 = 0

Γ 1
12 =

2v

1 + u2 + v2

Γ 2
12 =

2u

1 + u2 + v2
.

And the geodesic equations become

d2u

ds2
+

2v

1 + u2 + v2
du

ds

dv

ds
= 0

d2v

ds2
+

2u

1 + u2 + v2
du

ds

dv

ds
= 0

So

du

ds
= p

dp

ds
= − 2v

1 + v2 + u2
pq

dv

ds
= q

dq

ds
= − 2u

1 + v2 + u2
pq

Next, we write a Matlab function file and observe:
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