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Density of the Periodic Points in the Interval Set
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Abstract The dynamical system (f,R) is introduced and some of its proper-
ties are investigated. It is proven that there is an invariant set Λ on which the
periodic points of f are dense.

Keywords Density · Invariant set · Periodic points · Schwarzian derivative

Mathematics Subject Classification (2010) 37E05

1 Introduction

Periodic points are important in the study of discrete dynamical systems. The
long term behavior of the orbit of a periodic point is always clear and it can
affect the behavior of the nearby points. Determining all the periodic points
of a dynamical system explicitly is often impossible. But in a smooth one
dimensional discrete dynamical system when Schwarzian derivative is negative,
it is possible to find the attracting periodic orbits by following the orbits of
the critical points.
In this paper we introduce a class of real functions.Then we describe some of
the common properties of this class and show for each function there is an
invariant set on which the periodic points are dense.
First we explain the terminologies which are used in this paper.
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Suppose X is a topological space and f : X → X is a continuous function.
(f,X) is called a discrete dynamical system. By fn we mean f ◦ · · · ◦ f︸ ︷︷ ︸

n times

.

The point x0 ∈ X is called a periodic point of f of period n if n is the
least natural number that fn(x0) = x0. If n = 1, x0 is called a fixed point of
f . From now on we suppose I is an interval and f : I → I is a C3 function.
The periodic point x0 is called attracting (repelling) if |(fn)′(x)|< 1(> 1). The
point x0 is called neutral if |(fn)′(x)|= 1.

If f ′(x) 6= 0 then the Schwarzian derivative of f at x,denoted bySf(x), is

Sf(x) =
f

′′′
(x)

f ′(x)
− 3

2

(
f

′′
(x)

f ′(x)

)2

.

Functions with negative Schwarzian derivative have some important proper-
ties that we will mention in the following.

• The Schwarzian derivative of fn is negative.
• f ′

doesn’t have positive local minimum or negative local maximum.
• Immediate basin of any attracting periodic orbit contains either a critical

point of f or a boundary point of the interval I.
• Each neutral periodic point of f is attracting at least from one side.

See [2] and [4] for more details.

2 The Common Properties of the Function f

Suppose f : R→ R is a C3 function with the following properties:
1. f(0) = f(1) = 0,
2. f has just one critical point c, 0 < c < 1, such that f(c) > 1,
3. f

′′
(x) < 0, x ∈ R.

The following lemmas are easily proved by using the Intermediate Value The-
orem and the Mean Value Theorem.

Lemma 1 Suppose g(x) = f(x) − x and h(x) = f(x) − 1. Then the equa-
tion g(x) = 0 has exactly two solutions and similarly h(x) = 0 has also two
solutions.

Lemma 2 Suppose p 6= 0 is the fixed point of f . If 0 < x < p then f(x) > x
and if x < 0 then f(x) < x.

Corollary 1 With the same assumptions as in Lemma 2, we have f
′
(0) > 1.

Proof Suppose 0 < x < c since f(x) > x then f(x)−0
x−0 = f

′
(z) > 1 for some

z ∈ (0, x) and f
′

is decreasing, therefore if x < z then f
′
(x) > f

′
(z) > 1.
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Proposition 1 If x < 0 or x > 1 then limn→∞ fn(x) = −∞.

Moreover, we suppose f satisfies the following conditions.
4. The function f has negative Schwarzian derivative.
Let q̂, q be the solutions of h(x) = 0 and q̂ < q and the points p̂ < p be such
that f(p̂) = f(p) = p.
5. f ′(p̂) > 1.
6. max{f(p− q), f( q̂2 )} ≤ p.
The above inequality means f(p− q) ≤ f(p̂) = f(p) and f( q̂2 ) ≤ f(p̂) = f(p).
Since f is increasing on [0, c] and decreasing on [c, 1], as well as, p̂ ≤ q̂ ≤ c
then q̂

2 ≤ p̂, and p− q ≤ p̂.
Now suppose

Λ = {x ∈ [0, 1] : fn(x) ∈ [0, 1], n ∈ N}

It can be seen easily that f(Λ) = Λ, so Λ is an invariant set under f .
Our aim is to study the dynamics of f |Λ.

3 Density of the Periodic Points

In this section we are going to prove the following theorem.

Theorem 1 The periodic points of f are dense in Λ.

In order to prove the theorem we need the following lemmas.

Lemma 3 Suppose U ⊂ [0, p̂] is an open interval in [0, 1] such that U ∩Λ 6= ∅.
Then there is n ≥ 1 such that fn(U) ∩ [(p̂, q̂) ∪ (q, p)] 6= ∅.

Proof Suppose x ∈ U and 0 < x < p̂ then f(x) > x. So there is n > 0 such
that fn(x) ∈ [p̂, p). Since U ∩ Λ 6= ∅, then fn(U) ⊂/(q̂, q).

Lemma 4 Suppose U ⊂ [0, 1] is an open interval that contains p. Then there
is a positive integer n such that fn(U) ⊃ [0, 1].

Proof Since Sf(x) < 0 and {fn(c)} → −∞ , p is a repelling fixed point
and |f ′(p)|> 1. There is a neighborhood U ′ ⊂ U such that p ∈ U ′ and if x ∈
U ′∪f(U ′) then f ′(x) < −1. If x ∈ U ′ then the sequence {f2n(x)} is monotonic
and since there is no attracting periodic orbit, for suitable n0, f

2n0(x) ≥ 1 or
f2n0(x) ≤ q. So there is n such that fn(U) ⊃ [0, 1].

Now suppose the open interval U is a subset of (p̂, q̂) ∪ (q, p) and U ∩ Λ 6= ∅.
In this case we want to show that there is n ≥ 2 such thatfn(U) ⊃ [0, 1]. Here
we use the method of [1] and [3] in partition the intervals (p̂, q̂) ∪ (q, p).
Note that f(q, p) = (p, 1) and f(p, 1) = (0, p), so there is the interval A2 ⊂
(q, p) such that f2(A2) = [p̂, p), This interval is half-open and half-closed.The
subset that its image is (0, p̂) is called W2. f(0, p̂) = (0, p), so there is the
intervalA3 such that f3(A3) = [p̂, p). BY continuing this process all the subsets
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An’s are constructed. The partition of the interval (p̂, q̂) is done similarly. Note
that if An = [an, bn) then bn − an → 0 as n → ∞. Since fn([an, bn)) = [p̂, p)
and fn((q, an)) = (0, p̂) then by the Mean Value Theorem we have

| fn(an)− fn(bn) |
| an − bn |

>
| p− p̂ |
p− q

> 1

and
| fn(an)− fn(q) |
| an − q |

>
| p̂ |
p− q

≥ 1,

so for some cn ∈ (an, bn) and dn ∈ (q, an) we have |(fn)
′
(cn)| > 1 and

|(fn)′(dn)| > 1.
Since the Schwarzian derivative is negative hence | (fn)′(an) |> 1. Conse-
quently, | (fn)′(bn) |> 1. Therefore, if x ∈ [an, bn) then | (fn)′(x) |> 1. See [1]
for more details.
We use the fact that fn is expanding on [an, bn) in the proof of the following
lemma.

Lemma 5 Suppose U ⊂ (p̂, q̂)∪ (q, p) is an open interval such that U ∩Λ 6= ∅.
Then there is n ≥ 2 such that fn(U) ⊃ [0, 1].

The following lemma is useful in proving the existence of a fixed point in an
interval.

Lemma 6 Suppose g : R→ R is a continuous function and I and J are two
closed intervals such that I ⊂ J and g(I) ⊃ J . Then g has a fixed point in I.

We can conclude from the above lemmas that for every x ∈ Λ and every
neighborhood U of x there is n > 0 such that fn(U) ⊃ [0, 1] and consequently
there is a periodic point of f in U . Therefore, the periodic points of f are
dense in Λ.
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