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Abstract

In graph theory, a set H ⊆ V (G) is defined as a hub set if every pair of non-adjacent vertices outside H can be interconnected by

a path that exclusively traverses through the internal vertices contained in H. The hub number of a graph G refers to the minimal

cardinality of such a hub set, providing crucial insights into the structural connectivity of the graph. This paper delves into the

exploration of the hub number across various graph structures, specifically focusing on incidence graphs and square graphs, both of

which possess unique characteristics impacting their connectivity properties. We establish theoretical bounds for the hub numbers

of these graphs, facilitating a clearer understanding of their structural complexities. Furthermore, we derive explicit values for the

hub numbers of several special types of graphs, including path graphs, star graphs and complete graphs. Through rigorous analysis

and evaluation, this study contributes to the broader field of connectivity in graphs by not only identifying the hub numbers for

specific examples but also by proposing methodologies for their computation. These findings have important implications for

applications in network design and graph optimization, enhancing the utility of hub sets in practical scenarios.
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1 Introduction
Let G = (V (G),E(G)) be a graph with a vertex set V (G) of order v = |V (G)| and an edge set E(G). An edge e in G is denoted by its two

endpoints, such as e = {u,v}, in other words, e connects two vertices u and v of G. For a fixed vertex v ∈ V (G), the number of edges that

have v as one of their endpoints is called the degree of v and is denoted by deg(v).

A subgraph H of a graph G is a graph whose vertex set and edge set are subsets of those of G. If S is a subset of V (G), then the subgraph

of G induced by S, denoted by G[S], is a graph with vertex set S that includes all edges of G connecting vertices of S. A path Pn of order n

is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list. A cycle of

order n, denoted by Cn, is a non-trivial path with n vertices such that its first and last vertices are the same and no other vertex is repeated.

A Hamiltonian path(cycle) of a graph G is a path (cycle) that visits each vertex of G exactly once. A Hamiltonian graph is a graph that

possesses a Hamiltonian cycle. A graph with no cycle is called acyclic. A graph is connected if, for each pair of vertices, there exists at least
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one path that joins them. A tree is a connected acyclic graph. A star graph of order n, denoted by Sn, is a tree with one vertex of degree

n−1 and the other n−1 vertices having degree 1. A rooted tree is a tree T with a specified vertex v, called the root of T . A wheel graph

of order n, denoted by Wn, is a simple graph (n ≥ 4), formed by connecting a central vertex to all vertices of Cn−1. A complete graph of

order n, denoted by Kn, is a graph such that all possible pairs of vertices are connected. The distance between two vertices u and v in a

graph G, denoted by dG(u,v), is the length of shortest path between u and v. A homomorphism of a graph G into another graph H is a

mapping f : V (G) −→ V (H) such that ( f (u), f (v)) ∈ E(H) for all (u,v) ∈ E(G). A bijective homomorphism is called an isomorphism.

The eccentricity of a vertex v is defined as max{dG(u,v) : u ∈ V (G)}.The Radius of graph G, denoted by r(G), and the diameter of graph

G, denoted by d(G), are the minimum and maximum eccentricities over the set of all vertices of G, respectively. A subgraph H of G is

called an isometric subgraph, if for every pair of vertices u and v in H, we have dH(u,v) = dG(u,v). In a graph G, a set S ⊆V (G) is called

dominating set if every vertex not in S has a neighbor in S. In this paper, we follow the terminology given in [5].

Definition 1. [6] An incidence graph of a graph G, denoted by I(G), is defined such that its vertex set is

V (I(G)) = {(v,e) : v ∈V (G),e ∈ E(G),where v is incident to e ∈ G}.

In I(G), a pair of vertices (u,e) and (v, f ) (where (u,e), (v, f ) ∈ V (I(G))) forms an edge of I(G) if only if at least one case of following

conditions holds:

a) u = v,

b) e = f ,

c) (u,v) = e,

d) (u,v) = f .

As an example, the incidence graph of C3 is given below:

Figure 1. Incidence graph of cycle C3

Definition 2. [1] Let G be a graph. The square graph of G, denoted by G2, is a graph with the vertex set V (G) where two vertices u and

v are adjacent if and only if dG(u,v) ≤ 2. In the same way, the k-th power graph G, denoted by the Gk, is a graph with vertex set V (G) in

which two vertices u and v are adjacent if and only if dG(u,v)≤ k.

Clearly that if a graph has diameter d, then its d-th power is a complete graph. The following is an example for G2:

Let H ⊆ V (G) and u,v ∈ V (G). An H-path between u and v is defined as a path where all intermediate vertices are from H. (This

definition includes the degenerate cases, where the path consists of a single edge uv or a single vertex u if u = v; which are referred to as

trivial H-paths.) A set H ⊆V (G) is called a hub set of G if it satisfies the property that, for any u,v ∈V (G)\H, there exists an H-path in G

connecting u and v. The hub number of G, denoted by h(G), is defined as the minimum size of a hub set in G.The connected hub number

hc(G) of a connected graph G is the smallest order of a connected subgraph H of G such that any two non-adjacent vertices of G \H are

joined in G by a path with all internal vertices in H. The connected hub number of G, denoted by hc(G), is the minimum size of a connected

hub set in G [2], [3]. First, we review some known necessary results.

Theorem 1. [3] For a connected graph G, h(G)≤ γc(G).

Theorem 2. [4] If G is a graph with diameter d(G), then d(G)−1 ≤ h(G).

Theorem 3. [4] G is a complete graph if only if h(G) = 0.
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Figure 2. The square of G

2 Hub Number of Incidence Graphs
Let T be a tree and G be a graph. In this section, we establish some relations between the two parameters h(T ) and h(I(T )), present some

bounds for h(I(G)) and h(G2). In particular, we compute the hub number of some incidence graphs.

Theorem 4. If G is a simple graph with maximum degree ∆(G) and I(G) has order m, then h(I(G))≤ m−∆(G).

Proof. Suppose v is a vertex of graph G with maximum degree ∆(G) and the edges e1,e2,e3, . . . ,e∆ be located on incident to it. The set

S = {(v,e1),(v,e2), . . . ,(v,e∆)}

form a cluster in the graph I(G). It is clear that, the set H =V (I(G))\S is a hub set for I(G). So, we have

h(I(G))≤ m−|S|= m−∆(G).

Lemma 1. Let T be a tree, then I(T ) has a subtree T ′ such that T ≃ T ′ and V (T ′) is a connected dominating set for I(T ).

Proof. Consider a rooted tree T and label the vertices and edges as follows, label the root as v1
0 and the vertices adjacent to v1

0 as the

first level adjacent to the root, denoted as v1
1,v2

1, . . . . Similarly, the vertices in the i-th level are labeled v1
i,v2

i, . . . . By this labeling,

edges connecting vertices between consecutive levels and the edge connecting vt
i and v j

i−1 is labeled as e jt
i. Now consider the mapping

f : V (T )−→V (I(T )) defined by:

f (v j
i) =

(v j
i,el j

i) if i ̸= 0, j ̸= 1

(v1
0,e11

1) if i = 0, j = 1

where l is the index number of the vertex vl
i−1 in level i− 1 connecting v j

i. This mapping is an injective graph homomorphism, so the

image of T under f in I(T ) is a tree, denoted by T ′, and we have T ≃ T ′. We need to show that V (T ′) is a dominating set for I(T ).

Suppose x = (vs
i,ets

i) /∈V (T ′) is an arbitrary vertex of V (I(T )). Consider y = (vs
i,els

i) as the image of the vertex vs
i ∈ T under f . Clearly,

y = (vs
i,els

i) ∈V (T ′), and since x and y are adjacent, V (T ′) is a connected dominating set for I(T ).

Theorem 5. If T is a tree, then h(I(T ))≤ n.

Proof. By the previous lemma and Theorems 1, we have

h(I(T ))≤ n.

Theorem 6. If G is a graph of order n and has a Hamiltonian path, then h(I(G))≤ n.

Proof. Suppose G has a Hamiltonian path S in the form

v1,v2,v3, . . . ,vn−1,vn. For each 1 ≤ i ≤ n−1, ei = {vi,vi+1}. We define a function f : V (G)−→V (I(G)) as follows:

f (vi) =

(vi,ei) 1 ≤ i ≤ n−1,

((vn,en−1)) i = n.
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By f , I(G) has a path R corresponding to S in the form of

(v1,e1),(v2,e2), . . . ,(vn−1,en−1)(vn,en−1).

Since the vertices of I(G) are of the form of (vi,ew), (1 ≤ i ≤ n) it is clear that each vertex of I(G) is adjacent to at least one vertex from

the path R. Therefore, the vertices of R form a connected dominating set for I(G) and consequently, by Theorem 1 we have, h(I(G)) ≤
|V (R)|= n .

Theorem 7. Suppose that G = Pn
2 and n ≥ 3, then

hc(G) = h(G) = [
n
2
]−1.

Proof. Let Pn is a path of order n that

V (Pn) = {v1, . . . ,vn}, E(Pn) = {ei = {vi,vi+1} | 1 ≤ i ≤ n−1}.

It is clear that the maximum distance between any two vertices in G is distance between v1 and vn. Therefore d(G) = [ n
2 ] and according to

Theorem 2, we have [ n
2 ]−1 = d(G)−1 ≤ h(G). If n is even, we consider the set

S = {v3,v5,v7 . . . ,vn−1},

and if n is odd, we consider the set

S = {v3,v5,v7 . . . ,vn−2}.

It can be easily seen that the set S is a connected dominating set for the graph G. According to Theorem 1,

h(G)≤ |S|= [
n
2
]−1.

Consequently, we obtain hc(G) = h(G) = [ n
2 ]−1.

Theorem 8. If n ≥ 3 and G = I(Pn), then h(G) = n−2.

Proof. It is easy to see that I(Pn) = P2
2n−2. Thus, by previous theorem, we have

h(I(Pn)) = h(P2
2n−2) = [ 2n−2

2 ]−1 = n−2.

Theorem 9. If G = I(Sn) and n ≥ 4, then

a) hc(G) = h(G) = 1,

b) h(S2
n) = 0.

Proof.

a) Let Sn be a star graph of order n such that V (Sn) = {v1,v2, . . . ,vn−1,v}, deg(vi) = 1 (for 1 ≤ i ≤ n− 1), deg(v) = n and E(Sn) =

{e1,e2, . . . ,en−1} that ei = {v,vi}. It is clear that, S = {(v,e1)} is a connected dominating set for G. Therefore, according to

the Theorem 1, we have h(G) ≤| S |= 1. On the other hand, since the graph G is not complete, by Theorem 3, h(G) ≥ 1. So

hc(G) = h(G) = 1.

b) Since the graph S2
n is a complete graph, by Theorem 3, h(S2

n) = 0.

Theorem 10. If G = I(Kn) and n ≥ 4, then hc(G) = h(G)≤ n−1.
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Proof. Suppose Kn is a complete graph of order n. Let V (Kn) = {v1,v2, . . . ,vn} and E(Kn) = {e1,e1, . . . ,ep} where p =
n(n−1)

2 .

Assume that the edge e1,e2, . . . ,en−1 are incident to vertex v1. Consider the set

S = {(v1,e1),(v1,e2),(v1,e3), . . . ,(v1,en−1)}.

This set S is a dominating set for G. Since each vertex vi (for 2 ≤ i ≤ n) is connected to v1 by at least one edge, thus every vertex in the

incidence graph I(Kn) is adjacent to at least one vertex in S. By Theorem 1, we conclude that

h(G)≤| S |= n−1.
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