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Abstract

Radial Basis Functions (RBFs) have gained significant attention in various machine learning applications, including regression

modeling, due to their ability to approximate complex, nonlinear relationships. RBFs offer a flexible approach to capturing

intricate dependencies between input features and the target variable, making them particularly useful in high-dimensional and

nonparametric settings. This paper investigates the use of a specific class of compactly supported RBFs, known as Wendland

functions, within the framework of kernel ridge regression (KRR). We discuss their theoretical advantagessuch as sparsity

enforcement and computational efficiency as well as practical challenges, including parameter selection and scalability. A

comprehensive overview of RBFs is provided, along with their mathematical formulation and a comparison of different RBF

kernels in terms of smoothness and locality. We detail the integration of Wendland functions into KRR models, emphasizing

their suitability for problems requiring robustness and interpretability. Through extensive simulation studies, the performance of

the proposed approach is evaluated against conventional RBF kernels and other widely used regression techniques. Our results

demonstrate that Wendland-based KRR achieves competitive accuracy while offering improved stability in the presence of noise

and outliers. Furthermore, real-world case studies illustrate the effectiveness of Wendland functions in handling datasets with high

collinearity, where traditional kernels often struggle. The practical implications of our findings are discussed, along with guidelines

for implementation and potential extensions to large-scale or sparse data scenarios. This work contributes to the growing body

of research on interpretable and efficient kernel methods, providing insights for both theoretical and applied machine learning

practitioners.
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1 Introduction
Machine learning (ML) is a robust data-driven technique for identifying patterns in high-dimensional domains via induction. It offers a

comprehensive array of tools for data analysis, fitting complex non-linear functions, and dimensional reduction [25]. Machine learning

algorithms use induction to predict new data based on a given set of training data. Machine learning methodologies have been formulated

within the domains of statistics and computer science and have been used across a vast array of data types, including neurology, image
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and text processing, and robotics. Kernel approaches are among the most prevalent models in machine learning. Despite their inherent

simplicity, they provide a robust framework that allows for the use of non-linear information while remaining within the confines of convex

optimization.

The regression process involves calculating the weighted average of the response variable within a specified neighborhood around a

given data point. Kernel regression is a powerful non-parametric technique used for estimating the conditional expectation of a random

variable. This paper provides a brief introduction to kernel regression, discussing its underlying principles, advantages, and applications.

We explore the concept of kernel functions, the regression process, bandwidth selection, and various extensions of kernel regression methods.

Kernel regression is a flexible approach for modeling complex relationships between variables without making strong assumptions about

the functional form of the data-generating process. By incorporating a kernel function, kernel regression estimates the local average of the

response variable based on nearby data points in the feature space. Kernel functions play a pivotal role in kernel regression by assigning

weights to observations based on their distances from the point of interest. Common kernel functions include Gaussian, linear, polynomial,

and exponential kernels, each serving different purposes in capturing the underlying patterns in the data. By adjusting the width of the

kernel function, known as the bandwidth, the smoothness of the regression curve can be controlled to accommodate different levels of noise

in the data.

The ideal theoretical performance of KRR has led to its extensive use for regression purposes. Many different methods, like Nyström

regularization [20], distributed KRR [29], localized KRR [17], and boosted KRR [15], have been developed to reduce the computing needs

and prevent the saturation [12] of KRR. However, proving that KRR and its variations work well depends on choosing regularization

parameters in advance, which is not practical because it’s usually hard to get that prior data. However, proving that KRR and its variations

are effective depends on choosing regularization parameters beforehand, which is not practical because it’s often difficult to obtain that

prior information. The authors of [16] concentrated on the challenges of parameter selection in KRR. Because KRR has special spectrum

characteristics, it was demonstrated that carefully dividing the range of parameters helps to lessen the difference between two nearby KRR

estimates. The authors of [23] introduced a preconditioner-based approach for addressing an issue with kernel ridge regression. Their hybrid

methodology effectively decreased the condition number, being both precise and computationally economical, facilitating the processing of

extensive datasets with computational complexity proportional to the number of data points.

RBFs have garnered significant attention recently as a sophisticated approach for high-dimensional scattered data approximation, a

recognized technique in machine learning, a fundamental component of mesh-free methods, an alternative for developing higher-order

methods to solve partial differential equations (PDEs), an innovative strategy for addressing PDEs on surfaces, and a novel solution

for mesh repair, among other applications. All these applications are grounded on a singular mathematical principle: high-dimensional

approximation/interpolation. Furthermore, we can categorize RBFs into two primary groups: global RBFs and compactly supported RBFs

(CSRBFs). Gaussian, multiquadratic, inverse multiquadratic, and polyharmonic splines exemplify global RBF [22]. Conversely, the CSRBF

was introduced by [26]. In this context, global RBFs have an infinite range, while CSRBFs are limited to a specific range and are zero outside

of it. Regarding approximation, global RBFs exhibit insensitivity to the distribution of data points, but CSRBFs have a heightened sensitivity

to such distributions. The resolution of approximation and interpolation using global radial basis functions often results in the solution of a

system of linear equations.

Regression modeling is a fundamental technique in machine learning used to predict continuous output variables based on input features.

Traditional regression models such as linear regression may struggle to capture nonlinear relationships between variables effectively. Radial

Basis Functions provide a powerful alternative by allowing the model to adapt to the data’s complex structure without imposing strict

assumptions on the underlying relationship. For a training set of input vectors x1, . . . , xn ∈ X , the Gram matrix corresponding to a kernel

k is a n× n matrix K, where the components are defined as Ki j = k(xi,x j) for i, j = 1, . . . , n. K is symmetric, positive definite, and often

dense, lacking any zero entries. A dense Gram matrix may be very ill-conditioned, particularly for extensive data sets, hence presenting

substantial computational challenges regarding solution feasibility and stability [28]. The objective of our research is to develop kernels that

possess local support and exhibit sparse Gram matrices. The presence of several zero components in Gram matrices may significantly reduce

computer storage demands and the quantity of floating-point operations required for calculation. Wendland functions are a kind of compactly

supported, piecewise polynomial RBFs that are useful because they employ the minimal degree polynomial for a given smoothness and their

compact support results in sparse Gram matrix. Due to the unique features of compact support Wendland functions, our main motivation

in this article is to use these functions as kernel functions in KRR. To the best of the author’s knowledge, this is the very first work that

describes the estimation of KRR models using compact support Wendland kernels.
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This paper is organized as follows: Sections 2 and 3 present a discussion on radial basis functions and regression. Section 4 covers the

fundamentals of kernel ridge regression. In Section 5, we introduce compact radial basis functions as a kernel for kernel ridge regression.

Section 6 details the results of our simulations. Finally, Section 7 summarizes the findings and offers recommendations for future research.

2 Radial Basis Functions: An Overview
Radial Basis Functions are mathematical functions that depend on the distance between a data point and a center point or prototype. The

key idea behind RBFs is to transform high-dimensional input features into a higher-dimensional space where the relationships between the

data points are easier to capture. The most common form of RBF is the Gaussian RBF, which assigns weights to data points based on their

similarity to the center points.

The RBF kernels are solely determined by the spatial separation between the test and trial locations. It results in straightforward

implementation in high-dimensional systems. The majority of radial basis functions (RBFs) use a constant parameter, namely the shape

parameter, which might impact the stability and precision of the solution. When the form parameter of the multiquadratic (MQ) function [8]

is varied, the interpolation matrix becomes non-singular, hence establishing a well-defined interpolation issue. Moreover, this particular

RBF kernel exhibits higher accuracy compared to the cubic and thin plate spline kernels. The PHS radial function exhibits conditional

positive definiteness (CPD) and has the characteristic of scalability (see references [27, 29]). In general, the approach may be executed in

two specific ways, namely the global and local strong forms.

Presented below is a concise overview of local RBFs, which will be used in the next sections. An initial set of dispersed points

P = {u1, . . . ,uN} is selected in the domain D ⊆Rd . The radial function ϕ(u) = ϕ(∥u∥) is universally supported on the ring Rd . An estimate

of the function Ψ(u) at every point x in domain D is derived by using the function ϕ built on a collection of nodals P as described in

reference [29]

Ψ(u)≈ L Ψ(u) =
N

∑
i=1

ciϕ(∥u−ui∥). (1)

Through the execution of the interpolation conditions, the coefficients c j expansion (1) are obtained:

L Ψ(u j) = ν j,

whose matrix form is

BC = U,

where

U =



ν1

ν2

.

.

.

νN


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

1 ϕ11 ϕ12 · · · ϕ1N

1 ϕ21 ϕ22 · · · ϕ2N

. . . · · · .

. . . · · · .

. . . · · · .

1 ϕN1 ϕN2 · · · ϕNN


, C =



c0

c1

.

.

.

cN


.

An important observation is that if a radial basis function ϕ is strictly positive definite, then the corresponding interpolation matrix B is also

positive definite and therefore non-singular. Thus, interpolation issue (1) will be well-posed, meaning it has a precisely defined solution.

Gaussians and inverse multiquadratic distributions are radial basis functions that are strictly positive definite on any ring R [11]. The related

interpolation matrix in expansion (1) is guaranteed to be non-singular. Moreover, the interpolation matrix for multiquadratic is non-singular,

but not possessing stringent positive definiteness [29]. Some of the RBFs are listed in Table 1.

3 Regression and Ridge Regression:An Overview
Regression is a statistical technique used for modeling and analyzing the relationships between variables. The primary goal of regression is

to predict the value of a dependent variable (the target) based on one or more independent variables (the predictors). Simple linear regression,

which involves one independent variable and one dependent variable, is one of the most common types of regression.
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Table 1. r = ∥u∥and∥.∥ represents the Euclidean distance.

Name RBF Shape parameter

Multiquadric (MQ) ϕ(r) =
√

r2 + c2 c > 0

Inverse Multiquadric (IMQ) ϕ(r) = 1√
r2+c2 c > 0

Gaussian (GA) ϕ(r) = exp(−(cr)2) c > 0

Thin-plate splines (−1)1+c2rclogr c ∈ 2N

Wendland function (1− r)4
+(1+4r) c > 0

The linear regression model is defined as follows:

Y = β0 +β1X + ε, (2)

where

• Y is the dependent variable.

• X is the independent variable.

• β0 is the intercept (the value of Y when X = 0).

• β1 is the slope of the line (the change in Y for a one-unit change in X).

• ε is the random error term.

The parameters β0 and β1 are estimated using the method of least squares, which aims to minimize the sum of the squared differences

between the observed values and the values predicted by the model. The least squares estimates can be calculated using the following

formulas:

1. Estimate of the Slope (β̂1):

β̂1 =
n∑(XY )−∑X ∑Y
n∑(X2)− (∑X)2 . (3)

2. Estimate of the Intercept (β̂0):
β̂0 = Ȳ −β1X̄ , (4)

where Ȳ and X̄ are the means of the dependent and independent variables, respectively.

In multiple linear regression, we extend the concept to include multiple independent variables. The model can be expressed as:

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε, (5)

where

• Y is the dependent variable.

• X1,X2, . . . ,Xp are the independent variables.

• β0 is the intercept.

• β1,β2, . . . ,βp are the coefficients for the independent variables.

• ε is the random error term.

The parameters β0,β1,β2, . . . ,βp are estimated using the least squares method as well. The solution can be expressed in matrix form:

β̂ = (XT X)−1XT y, (6)

where
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• β̂ is the vector of estimated coefficients.

• X is the matrix of independent variables (including a column of ones for the intercept).

• y is the vector of observed values of the dependent variable.

This matrix approach allows for efficient computation, especially when dealing with multiple predictors.Ridge regression is a type of linear

regression designed to address the problem of collinearity among independent variables. In ridge regression, a penalty term is added to the

cost function, which helps reduce the magnitude of the regression coefficients. This approach makes the model less sensitive to the training

data and improves its generalizability.

The ridge regression formula is expressed as:

β̂ = argmin
β

(
n

∑
i=1

(yi −Xiβ )2 +λ
p

∑
j=1

β 2
j

)
, (7)

where

• β̂ are the estimated coefficients.

• yi are the actual values of the dependent variable.

• Xi is the matrix of independent variables.

• λ is the penalty parameter (ridge penalty) that determines how much to shrink the coefficients. Larger values of λ lead to greater

shrinkage of the coefficients.

In ridge regression, the estimation of parameters is modified by the addition of the penalty term. The solution can be expressed in a matrix

form:

β̂ridge = (XT X +λ I)−1XT y, (8)

where

• I is the identity matrix.

• This formula indicates that the ridge regression estimates are influenced by both the data matrix X and the penalty term λ , which

helps to stabilize the estimates when multicollinearity is present.

Regression and ridge regression are useful methods for analyzing data and making predictions. Simple linear regression helps show how

variables relate to each other, while ridge regression is made to deal with problems that come from having too many similar predictors and

to make the model more reliable. Using these methods can provide important insights from the data. Estimating parameters in both methods

is key to understanding the data relationships and making precise predictions. In multiple linear regression, being able to work with several

predictors allows for a better analysis of complicated datasets.

4 Kernel Ridge Regression
A kernel on a domain U , an arbitrary set with no assumed structure, is a symmetric positive semi-definite function of two variables, denoted

as K : U ×U → R, such that [30]

• for all u1, u2 ∈ R we have K(u1,u2) = K(u2,u1) and

• For every positive integer N, and for any elements u1, u2, . . . , uN ∈U , as well as any real numbers c1, c2, . . . , cN ∈ R, it holds that

∑i, j∈N cic jK(ui,u j)≥ 0.
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Perhaps the most basic kernelized method is ridge regression. Our objective is to develop a linear function that represents the dependent

relationships between the continuous covariates ui and the response variables vi. For that purpose, the conventional approach is to minimize

the quadratic cost. Nevertheless, if we choose to operate in feature space, the replacement of ui with ϕ(ui) carries a distinct risk of overfitting.

Therefore, regularization is essential to prevent overfitting. We will revisit this subject in subsequent educational sessions due to its great

significance

C(w) =
1
2 ∑

i
(vi −wT ui)

2. (9)

An efficient and straightforward method to regularize is to impose a penalty on the norm of w. We alternatively refer to this phenomenon

as "weight decay." It is still to be determined how to choose λ . The most often- used strategies are cross-validation and leave-one-out

estimations. Consequently, the total cost function is given by,

C =
1
2 ∑

i
(vi −wT ui)

2 +
1
2

λ∥w∥2. (10)

The solution to this minimization problem is unique [6]. It need minimization. Calculating derivatives and setting them equal to zero results

in,

∑
i
(vi −wT ui)ui = λw =⇒ w = (λ I+∑

i
uiuT

i )
−1(∑

j
v ju j). (11)

Departing from the optimization of the cost function mentioned before, we may include Lagrange multipliers into the issue. Such an

approach will result in the derivation following a very similar pattern to that of the SVM scenario. We propose the introduction of additional

variables, ξ = yi −wT ϕi, and rephrase the aim as the restricted quantum probability formula.

minimize ∑
i

ξ 2
i , (12)

S.t.

ξi = yi −wT ϕi, ∀i

∥w∥ ≤ B

5 Wendland Functions for KRR

Typically, kernel matrices are inherently dense. Although certain kernels, like the square-exponential kernel K(t) = e−t2
, diminish rapidly,

they never attain a value of zero. To attain sparsity, we may seek kernel functions with compact support; specifically, those that are zero

outside the interval [−c,c], which we will generally consider as [−1,1]. Although any function may be modified to possess compact support

by truncation (i.e., defining f̃ (t) as f (t) for t ∈ [−1,1] and zero elsewhere), the outcome often does not provide proper kernels [3]. The

Wendland functions [26] and the function described in [18] are two examples of compactly supported positive definite kernels that have

been found in the literature.

Several types of RBF kernels can be used in regression models, with the Gaussian kernel being the most common. Other popular choices

include the Multiquadratic, Inverse Multiquadratic, and Thin Plate Splines kernels, each with its characteristics and applications. The choice

of the RBF kernel can significantly impact the model’s performance and generalization ability.

To incorporate RBFs into regression models, the model typically combines the RBF outputs with a linear combination of weights. This

technique allows the model to capture both linear and nonlinear relationships between the input features and the target variable. Training

such models often involves optimizing the weights and tuning the hyperparameters, such as the number of RBF centers and the bandwidth

parameter.Let u ∈U = {ui, i = 1, . . . , N} be an independent variable, and v ∈V = {vi, i = 1, . . . , N} be a dependent variable. The regression

model consists in finding a function Psuch that P(ui) = vi, i = 1, 2 . . . , N. In order to do this, we consider P ∈ span{ϕ(.,ui), ui ∈U} where

Ω × Ω ⇒ R is a strictly positive definite and symmetric kernel. This presumption is not limiting; in fact, there exists an associated

normalized positive definite kernel for each conditionally positive definite kernel. This selection results in the interpolate taking on the form

P(x) =
N

∑
k=1

αkΦ(u,uk), u ∈ Ω, (13)
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We find the coefficients α = (α1, . . . , αN)
T in equation (13) by solving the equation Aα = Y, where the matrix A ∈ RN×N has entries

(A)ik = Φ(ui,uk) for i, k = 1, . . . , N; and V = (v1, . . . , vN)
T . The solution is unique because the kernel is both positive definite and

symmetric. The uniqueness of the solution is guaranteed by the stringent positive definiteness and symmetry of the kernel. Specifically, we

consider RBFs and assume the existence of a function ϕ in the interval [0;∞) and a shape parameter ε greater than 0 such that for each

u, v ∈ Ω, the equation Φ(u,v) = ϕε (∥u− v∥2) := ϕ(r) holds.

Wendland functions were first introduced in [26], with further instances shown in [21]. We shall designate the Wendland functions from [26]

as the original Wendland functions and those from [21] as the missing Wendland functions. The first exhibition of the Wendland functions

took place in 1947 [10]:

ϕ l,k(r) = pk(r)(1− r)l+k
+ , (14)

where (x)+ = max(x,0) and is a polynomial of degree k. The index l indicates that these functions are positive definite in Rl . The index k

denotes the quantity of continuous derivatives. The Wendland functions are defined as the polynomial of the lowest degree that fulfills these

criteria [19].Schaback [21] demonstrated that the missing Wendland functions have the form

ϕ l,k+
1
2
(r) = pl,k

r2

2
L(r)+ql,k

r2

2
S(r), (15)

where

L(r) = log(
r

1+
√

1− r2
), and S(r) =

√
1− r2,

and pl,k and ql,k are polynomials. The missing Wendland functions, although they continue to be supported on the interval [0,1], now

contain logarithmic and square-root multipliers with polynomial components. The result is a significant difference between the original

Wendland functions and the missing Wendland functions [9]. We provide explicit formulas for the missing Wendland functions for d = 2

and k = 1
2 ,

3
2 and 5

2 in Table 2.

Table 2. The missing Wendland functions ϕl,k(r) for d = 2 and k = 1
2 ,

3
2 ,

5
2 .

k Missing Wendland function
1
2 ϕ2, 1

2
(r) = 3r2L(r)+(2r2 +1)S(r)

3
2 ϕ3, 3

2
(r) =−15r4(6+ r2)L(r)− (18r428r2 −4)S(r)

5
2 ϕ4, 5

2
(r) = (945r8 +252r6)L(r)+(256r8 +2639r6 +690r4 −136r2 +16)S(r)

The CSRBFs of Wendland, which have continuity of C0,C2,C4, and C6 correspondingly, are shown in equation (16).

ϕ3,0(r) = (1− r)2
+,

ϕ3,1(r) = (1− r)4
+(4r+1),

ϕ3,2(r) = (1− r)6
+(35r2 +18r+3), (16)

ϕ3,3(r) = (1− r)8
+(32r3 +25r2 +8r+1).

Compactly supported RBF kernels provide sparse Gram matrices, offering significant benefits for certain applications involving large data

sets. Sparse matrices provide significant savings in storage and computational memory by omitting several zero entries. Secondly, sparse

matrix methods need much less computational time than conventional algorithms by circumventing arithmetic operations on zero members.

6 Numerical Simulation
We conduct numerical analyses to validate the theoretical findings and evaluate the effectiveness of the kernel ridge regression estimator

with limited sample sizes. Additionally, we present several case studies that illustrate the Wendland functions in regression models across

various domains. These case studies highlight how Wendland functions can enhance the predictive accuracy of models, particularly when

addressing complex and nonlinear relationships within the data.
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Mean Squared Error (MSE) is a widely used metric for evaluating the accuracy of a predictive model. It measures the average of the

squares of the errors, that is, the differences between the predicted values and the actual values. The formula for MSE is given by:

MSE( f̂ ) =
1
n

n

∑
i=1

( f̂ (ui)− f (ui))
2, i = 1,2, . . . ,n, (17)

where f (ui) represents the actual values, f̂ (ui) represents the predicted values, and n is the number of observations.

MSE is particularly useful because it penalizes larger errors more severely than smaller ones, making it sensitive to outliers. This

property helps in identifying models that consistently produce accurate predictions.

In this paper, we utilize MSE as a criterion for evaluating and comparing the performance of different models. By analyzing the MSE

values, we can determine which model provides the best fit to the data, thereby allowing for a more informed selection of the most effective

modeling approach.

Example 1. In this example, we explore the application of different modeling techniques to analyze a dataset. The primary objective

is to evaluate how well these models can predict outcomes based on the available data. We specifically compare two methods: Least

Squares Regression and the Wendland function. We use the least squares method, a traditional approach, to minimize the sum of squares

of the differences between observed and predicted values. Despite its widespread use, it may not always effectively capture complex

relationships. On the other hand, the Wendland function is a type of radial basis function that offers greater flexibility in modeling non-linear

relationships. By examining the mean squared error (MSE) of both methods, we aim to determine which model provides a better fit for the

data. This comparison not only highlights the importance of selecting the appropriate modeling technique but also demonstrates how

different approaches can yield varying levels of accuracy in predictions.Initially, we generated two random variables, x1 and x2, from a

uniform distribution over the interval [−3,3]. Next, we computed the variable y using Equation

y = sin(2∗ (x1 + x2))+0.5x1x2 + ε,

that incorporates a normal error term. This error term is characterized by a mean of zero and a standard deviation of 0.2, reflecting a small

degree of variability around the expected values. The inclusion of this normal error is crucial for simulating realistic data, as it mimics

the inherent uncertainties present in real-world measurements. Figure 1 provides a visual representation of the generated data and the

simulated model from two different perspectives. This figure is particularly useful for gaining a more profound understanding of the models

behavior and the distribution of data in a two-dimensional space. We can observe the distribution of data points over the model’s surface

in the figure on the left. This initial perspective allows us to see how the actual data (generated from a uniform distribution) aligns with the

simulated model. The model’s surface clearly positions the data points, demonstrating the simulation’s accuracy.The observation changes

in the figure on the right help us better understand the depth and overall shape of the model. This perspective may reveal additional details

about how the models surface varies and the distances between the data points and the model. Examining these two angles enables us to

identify the strengths and weaknesses of the model and gain a clearer understanding of its predictive accuracy.This figure not only aids in

comprehending the data and the model but also allows us to observe the impact of random errors (introduced through the normal error

with a mean of zero and a standard deviation of 0.2) on the simulation results. This information can assist us in optimizing the model and

improving the accuracy of predictions. In our analysis, we compared the mean squared error (MSE) of two modeling methods. In the Least

Squares Regression, the MSE is approximately 2, indicating a relatively poor fit between the predicted values and the actual data points. In

the Wendland function, the MSE is significantly lower at 0.4, suggesting a much better fit and indicating that the Wendland function captures

the underlying data structure more accurately. This comparison highlights the Wendland function as a more effective modeling choice for

this dataset.

General information about the dataset, parameter settings, and evaluation criteria used in the data used in Example 1 at a glance

• Dataset: Two variables x1,x2 uniformly sampled from [−3,3]. Target y = sin(2(x1 + x2))+0.5x1x2 + ε , ε ∼ N (0,0.22).

• Parameters: Wendland kernel ϕ3,1(r) = (1− r)4
+(4r+1) with c = 1; λ optimized via 5-fold CV.

• Metrics: MSE for OLS (2.3) vs. Wendland-KRR (0.4).

To evaluate the accuracy of our model, we calculated the amount of error using two distinct methods: the least squares approach and

Wendlands function. The results indicated that the error associated with the least squares method was 2.3, while the error calculated using
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Figure 1. Two Perspectives of Data and Simulated Model in Example 1

Wendlands function was 5.4. These findings highlight the differences in error estimation between the two methods, suggesting that the least

squares approach may provide a more accurate fit for our simulated data in this context.

Example 2. In the second example, we employed the Monte Carlo method to assess the accuracy of the studied approach. We generated

100 random samples with two independent variables from a uniform distribution in 100 replications. The dependent variable was then

produced based on models 18 to 22 For d = 3, we examine three instances of smooth regression functions exhibiting varying complexity [2].

f (u) =−4+3u1u2+0.5u324u1u2u3, (18)

f (u) = sin(2π(u1 +u2))+u3
3 +0.5u2

1u2, (19)

f (u) = sin2(2πu1)+ cos(2πu2
2)+3u2u3

3, (20)

f (u) = eu2
1u2 sin(2πu2u2

3). (21)

For d = 5

f (x) = ex5 sin(2π(x1 + x2))cos(2πx2
3x4)x3

5. (22)

Subsequently, we estimated the parameters and calculated the model accuracy using three methods: Least Squares Regression, Ridge

Regression, and the Wendland function. The results of this analysis are presented in Table 3.

To assess the accuracy of the three modeling methodsLeast Squares Regression, Ridge Regression, and the Wendland functionbox plots of the

error rates from 100 experiments were created in Figure2. The results clearly indicate that the Wendland function exhibits higher accuracy

compared to the other methods. This conclusion is evident from the box plots, which show that the error distribution for the Wendland

method is significantly lower. The reduced error range and tighter clustering around the lower error values highlight its effectiveness in

predicting outcomes more accurately than the other approaches.
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(c) The box plot in 1000 replications for MSE in Model 20
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(d) The box plot in 1000 replications for MSE in Model 21
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(e) The box plot in 1000 replications for MSE in Model 22

Figure 2. Box plot for comparing three methods of estimation of regression parameters for different models.

General information about the dataset, parameter settings, and evaluation criteria used in the data used in Example 2 at a glance
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Table 3. Ridge fitting error and least square regression also using kernel method with Wendland function for simulated data.

Model OLS Ridge regression Wendland

18 1.667207 1.604626 0.0005825475

19 0.5579917 0.5378446 0.0006072424

20 1.058185 1.017672 0.0001295131

21 0.2966672 0.2857586 0.00003615231

22 0.1853804 0.1748771 1.292559e−25

• Datasets: 100 Monte Carlo replications for Models 6.26.6 (Equations 6.26.6) with d = 3,5.

• Parameters: Wendland ϕ3,2(r); λ via 10-fold CV.

• Results: Wendland-KRR outperformed OLS and Ridge (Table 3, MSE ≈ 10−25).

Example 3. In this example, we use the seatpos data available in the R software. Everyone likes to find their perfect driving posture by

adjusting the seat. It would be useful for car designers to know how various-sized and aged drivers would place the seat. The HuMoSim

lab at Michigan State University gathered information from 38 drivers. Here are the variables that are part of the dataset: There is a

center of gravity for the hip, leg, age, weight, shoes, and sitting.The independent variables in these data have a strong correlation, or, in

other words, there is collinearity. By examining the eigenvalues, it is clear that the ratio of the largest to the smallest eigenvalue is equal

to 500625, which indicates strong collinearity in the data. We fitted ridge regression and ordinary least squares regression for these data

and calculated the error values, which equal 1164.453 and 1085.836, respectively. Table 1 contains this information in full. Using the

Wendland functions, we performed the Wendland transformation on the data and re-estimated the parameters using the ridge and least

squares method (columns 3 and 4 of Table 4). As you can see, the Wendland transformation significantly reduced the amount of error. On

the other hand, the error using ridge regression is lower than that of least squares regression, meaning that its accuracy is higher than that

of normal least squares regression.

Table 4. Ridge fit error and least squares regression also using kernel method with Wendland function for seatpos data set.

OLS Ridge regression KOLS KRR

MSE 1164.453 1085.836 1.317509 1.699972e−06

General information about the dataset, parameter settings, and evaluation criteria used in the data used in Example 3 at a glance

• Dataset: seatpos Publicly available in R, the dataset contains 38 observations with 8 variables (e.g., hip center, age, weight).

Independent variables exhibit high collinearity (largest-to-smallest eigenvalue ratio = 500,625).

• Transformation: Adaptive Wendland ϕ3,2(r) with adaptive support radius c tuned to minimize collinearity. reduced collinearity.

• Results: Wendland-KRR achieved MSE = 1.7×10−6 (Table 4).

7 Conclusion
Kernel methods offer a clear and organized way to train learning machines, and the good performance they achieve can be easily supported

by statistical learning theory or Bayesian reasoning. RBFs have been extensively researched because of their effective generalization and

universal approximation capabilities via the collocation approach. This study outlines a novel technique for creating regression models using

a compact support kernel approach. This approach includes many benefits. The technique is systematic and conceptually well-motivated.

The learning engine is intentionally designed using the most informative patterns within the data. The reliance on the data is evident,
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facilitating the explanation and interpretation of the model, although data cleaning might be used to enhance performance.

In conclusion, RBFs offer a versatile and powerful tool for enhancing regression models’ predictive capabilities. By leveraging the flexibility

and adaptability of RBFs, researchers and practitioners can build regression models that effectively capture complex relationships in the

data. However, challenges such as tuning hyperparameters and selecting appropriate kernel functions remain critical aspects of using RBFs

in regression modeling. Future research could focus on developing more efficient algorithms for training RBF-based regression models

and exploring their applications in emerging domains. In high-dimensional settings, the proposed method may encounter challenges such

as distance concentration (indistinguishable Euclidean distances), increased computational complexity, and sensitivity to parameter tuning

(e.g., support radius). These factors could reduce model accuracy and demand heavier computational resources. In future work, we will

address these challenges by integrating dimensionality reduction techniques (e.g., PCA), distributed algorithms, and adaptive parameter

tuning to enhance the methods scalability and applicability to complex, large-scale datasets.
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