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On the Dynamics of the Family ax
d(x− 1) + x
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Abstract In this paper we consider the dynamics of the real polynomials of
degree d + 1 with a fixed point of multiplicity d ≥ 2. Such polynomials are
conjugate to fa,d(x) = axd(x−1)+x, a ∈ R\{0}, d ∈ N. Our aim is to study
the dynamics fa,d in some special cases.
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1 Introduction

The study of the dynamics of polynomials was begun by investigation of the
dynamics of the quadratic family, x2 + c. By decreasing the parameter c, the
behavior of this system becomes more complicated and after the appearance of
sequential period doubling bifurcations, it becomes chaotic on some invariant
subset of R. See [3,5–7].
By increasing the degree of a polynomial, we expect that the behavior of the
system becomes more complicated, since the behavior of the fixed points and
the critical points play major role in determining the behavior of a system.
For example it can be refereed to [2] in the real case, [4,8,9,11] in the complex
cases and [10] for more general cases.
In [1], a family of the cubic polynomials are considered that have a fixed point
of multiplicity two. These polynomials are conjugate to ax2(x − 1) + x, a ∈
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R \ {0}. The purpose of this paper is to consider the general form of this
family, namely fa,d(x) = axd(x − 1) + x, a ∈ R \ {0}, d ≥ 3. When d is an
even number, the behavior of fa,d is completely similar to fa,2. This subject
is discussed in section 2. However when d is an odd number, the behavior is
completely different. We study it in section 3.

2 d is an even number

In this section, we suppose d ≥ 4 is an even number. The case d = 2 has been
investigated in [1]. We will show that the behavior of fa,d in this case, is similar
to fa,2. Indeed, many of the results are similar and they will be modified, if
necessary. To do this, we need the following lemmas. These lemmas show that
the properties of fa,d are similar to fa,2.

Lemma 1 Let a > 0, then fa,d is increasing on (−∞, 0) ∪ (1, ∞).

Proof We have

f ′′
a,d(x) = adxd−2

(

(d+ 1)x− (d− 1)
)

. (1)

So f ′
a,d is decreasing on the interval (−∞, 0) and increasing on the interval

(1, ∞). Thus for x > 1, f ′
a,d(x) > f ′

a,d(1) = a + 1 > 0 and for x < 0,
f ′
a,d(x) > f ′

a,d(0) = 1 > 0. Therefore fa,d is increasing on (−∞, 0) ∪ (1, ∞).
⊓⊔

Lemma 2 Let a > 0, then the equation axd − axd−1 + 1 = 0 has no solution
if a < d( d

d−1)
d−1, has only one solution if a = d( d

d−1 )
d−1 and has exactly

two distinct solutions if a > d( d
d−1)

d−1. Morever the solutions belong to the
interval (0, 1).

Proof Let H(x) = axd − axd−1 + 1, then H has a minimum in d−1
d

. So H is

decreasing on (−∞, d−1
d

) and increasing on (d−1
d

, ∞). Also we have H(0) =

H(1) = 1 and H(d−1
d

) = a(d−1
d

)d−1(−1
d
) + 1. Now, the assertion holds easily.

⊓⊔

Lemma 3 Let a < 0, then fa,d(x) = 0 has two non-zero solutions x0 and x1

such that x0 < 0 < 1 < x1.

Proof Let H(x) = axd − axd−1 + 1. Then limx→±∞ H(x) = −∞ and also
H(0) = H(1) = 1. Therefore H has two solutions, one is in the interval
(−∞, 0) and the other is in the interval (1, ∞). ⊓⊔

Lemma 4 Let a < 0, f ′
a,d(x) = 0 has two solutions c0, c1 such that x0 <

c0 < 0 < c1 < x1.

Proof Let the non-zero solutions of fa,d(x) = 0 are x0 < 0 < x1. Note that 0
is a solution of fa,d(x) = 0, too. So there are c0 ∈ (x0, 0) and c1 ∈ (0, x1)
such that f ′

a,d(c0) = f ′
a,d(c1) = 0. By employing the properties of f ′′

a,d(x), one
can prove that f ′

a,d(x) = 0 has no other solution. ⊓⊔
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What will be presented, determine the dynamics of the family fa,d(x) =
axd(x − 1) + x where d is an even number. They are proved easily and are
similar to the case d = 2 in [1].

Theorem 1 Let fa,d(x) = axd(x− 1) + x, a > 0, then

1. if x /∈ [0, 1], then limn→∞ |fn
a,d(x)| = ∞;

2. if a ≤ d( d
d−1 )

d−1, and x ∈ (0, 1), then limn→∞ fn
a,d(x) = 0;

3. if a > d( d
d−1 )

d−1, then the interval [0,1) is the union of a countable number
of intervals whose points have orbits that converge to 0 or −∞.

Proof Note that fa,d(x) > x if and only if x > 1. So by Lemma 1, for x ∈
(−∞, 0)∪ (1, ∞), {|fn

a,d(x)|} is an unbounded increasing sequence. So part 1
holds.
For part 2, note that if 0 < a ≤ d( d

d−1 )
d−1 and 0 < x < 1, then 0 ≤ fa,d(x) <

x < 1, so the decreasing sequence {fn
a,d(x)} converges to 0. Thus the assertion

in part 2 holds.
And finally, if a > d( d

d−1)
d−1, then by Lemma 2 the equation fa,d(x) = 0 has

two non zero solutions in the interval (0, 1). The rest of the proof is similar
to Theorem 1.1 in [1]. ⊓⊔

Theorem 2 Suppose fa,d(x) = axd(x − 1) + x, a < 0, then there exist a
negative periodic point p0 of period 2, a sequence of closed intervals {Jn}n≥0,
and a sequence of open intervals {In}n≥0 such that

(p0, fa,d(p0)) = (∪n≥0In)
⋃

(∪n≥0Jn),

fn
a,d(In) = I0, f

n
a,d(Jn) = J0, and moreover for every n the orbit of any point

of the interval Jn converges to 0.

Note that we should write p0(a, d) since it depends on a and d. However, for
simplicity, we omit them.
The family {fa,d} undergoes also a period-doubling bifurcation at the parame-
ter a = −2 for the first time, and by decreasing a, we have a sequential period
doubling bifurcations until for the first time the orbit of c1 is attracted to 0.
This happens when fa,d(c1) = x1 where c1 and x1 are the same as that offered
at Lemma 4. With the notations of Lemma 4 and Theorem 2, we have:

Theorem 3 Suppose fa,d(x) = axd(x− 1)+ x, a < 0 and fa,d(c1) ∈ J1, then
fa,d is chaotic on Λ = {x ∈ [0, x1] : fn

a,d(x) ∈ [0, x1]; ∀n ≥ 1}.

3 d is an odd number

In this section, we suppose that d ≥ 3 is an odd number. The lemmas that are
subsequently presented, show that in this case, as in the previous case where
d was even, the properties of fa,d are same and independent of d.
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Lemma 5 Let a > 0, then f ′
a,d is increasing on (−∞, 0) ∪ (d−1

d+1 , ∞) and

decreasing on (0, d−1
d+1 ).

Proof Note that in the case a > 0 and d odd, the relation (1) shows that
f ′′
a,d(x) > 0 if x ∈ (−∞, 0) ∪ (d−1

d+1 , ∞) and f ′′
a,d(x) < 0 if (0, d−1

d+1 ). ⊓⊔

Lemma 6 Let a > 0 and d be odd, then (see Figure 1)

1. the solutions of fa,d(x) = 1 are 1 and d

√

−1
a
.

2. the equation f ′
a,d(x) = 0 has exactly one negative solution such that it

is greater than d

√

−1
a
. This point is a local minimum for fa,d. Also, it

has at most two positive solutions. Moreover, if a > (d+1
d−1)

d−1, then it
has two distinct positive solutions in (0, 1) such that one of them is the
local maximum point and the other is the local minimum point of fa,d, if
a = (d+1

d−1)
d−1, then it has one positive solution in (0, 1) such that it is

an inflection point of fa,d, and the otherwise f ′
a,d(x) = 0 has no positive

solution.
3. the equation fa,d(x) = 0 has only one solution in the interval (−∞, 0).

Fig. 1 The graphs of f9,3, f9,5 and f9,7, respectively from the left to the right

Proof The proof of (1) is obvious. For part (2), note that f ′
a,d(0) = 1 and

limx→−∞ f ′
a,d(x) = −∞. So f ′

a,d(x) has at least one solution c0 < 0. Lemma 5
shows that this solution is unique. Since f ′

a,d(x) is increasing on (−∞, 0), so

d

√

−1
a

< c0. To prove the second assertion, note that by Lemma 5, f ′
a,d(x) >

f ′
a,d(

d−1
d+1 ) = (−a)(d−1

d+1 )
d−1 + 1 for x ∈ (0, ∞). Now if a < (d+1

d−1)
d−1, then

f ′
a,d(x) > 0 for x ∈ (0, ∞), if a = (d+1

d−1 )
d−1, then f ′

a,d(
d−1
d+1 ) = 0. Finally

if a > (d+1
d−1)

d−1, then f ′
a,d(

d−1
d+1 ) < 0, so f ′

a,d(x) = 0 has two solutions such

that one of them is in the interval (0, d−1
d+1 ) and the other is in the interval

(d−1
d+1 , ∞).
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Now, let c0 be the negative solution of f ′
a,d(x) = 0. According to part (2),

fa,d(c0) < fa,d(0) = 0. Thus the assertion in part (3) holds since fa,d(
d

√

−1
a
) =

1 > 0 and fa,d is decreasing on (−∞, c0). ⊓⊔

By solving the equations, fa,d(x) = 0 and f ′
a,d(x) = 0, we have:

Lemma 7 If a > dd

(d−1)d−1 (a = dd

(d−1)d−1 , a < dd

(d−1)d−1 ), then fa,d(x) = 0 has

two positive solutions (only one positive solution, no positive solution).

In the case a < 0 we have:

Lemma 8 Let a < 0, then (see Figure 2)

1. if x < 0, then fa,d(x) < 0.
2. the equation f ′

a,d(x) = 0 has only one solution c, where d−1
d+1 < c < 1.

3. the equation fa,d(x) = 0 has exactly two solutions.

Proof Part (1) is obvious. To prove part (2), note that f ′
a,d is decreasing on

(−∞, 0) ∪ (d−1
d+1 , ∞) and increasing on (0, d−1

d+1 ) and also, limx→∞ f ′
a,d(x) =

−∞ and f ′
a,d(0) = 1. For part (3), let H(x) = axd − axd−1 + 1. So H(1) = 1

and limx→∞ H(x) = −∞. Therefore the equation fa,d(x) = 0 has at least one
positive solution. It is unique, since f ′

a,d(x) = 0 has only one solution. ⊓⊔

Fig. 2 The graphs of f
−3,3, f

−3,5 and f
−3,7, respectively from the left to the right

The following theorems are about the dynamics of fa,d, where d is an odd
number.

Theorem 4 Let fa,d(x) = axd(x − 1) + x, a > 0, and d be an odd number,
then

1. for x ∈ (−∞, d

√

−1
a
) ∪ (1, ∞), the orbit of x tends to ∞.

2. for x ∈ ( d

√

−1
a
, 1), the orbit of x tends to 0 provided
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(i) a ≤ dd

(d−1)d−1 or,

(ii) a > dd

(d−1)d−1 , and fa,d(c2) ≥ t0, where c0 < c1 < c2 are the critical

points, x0 < 0 < x1 < x2 are the solutions of fa,d(x) = 0, t0 < 0 and
fa,d(t0) = x1.

Theorem 5 Let fa,d(x) = axd(x − 1) + x, a < 0, and d be an odd number,
then

1. the family {fa,d} undergoes a period-doubling bifurcation at the parameter
a = −2 for the first time.

2. if fa,d(c) > x0, where c is the unique critical point and x0 is non-zero
solution of fa,d(x) = 0, then fa,d is chaotic on

Λ = {x ∈ [0, x0] fa,d(x) ∈ [0, x0] for all n ≥ 1}.

With the notations of Theorem 4, we conjecture:

Conjecture 1 Let fa,d(x) = axd(x − 1) + x, a > 0, and d be an odd number,

1. and let d

√

−1
a

< fa,d(c2) < t0, then fa,d has some periodic points.

2. if fa,d(c2) ≤
d

√

−1
a

and Λ = R \ {x ∈ R : limn→∞ fa,d(x) = 0 or ∞}, then

the restriction fa,d on Λ is chaotic.

References

1. M. Akbari, M. Rabii, Real cubic polynomials with a fixed point of multiplicity two, to
appear in Indagationes Mathematicae.

2. M. Akbari, M. Rabii, Hyperbolicity of the family fc(x) = c(x− x
3

3
), Iranian Journal of

Mathematical Sciences and Informatics, Vol.6, No.1 , (2011), 53–58.
3. K. T. Alligood, T. D. Sauer, J. A. Yorke, Chaos, an introduction to dynamical systems,

Springer-Verlag, (2000).
4. B. Branner, J. H. Hubbard, The iteration of cubic polynomials, Part I. The global

topology of parameter space, Acta Mathematica, 160, (1988), 143–206.
5. W. de Melo, S. van Strien, One-dimensional dynamics, Springer-Verlag, (1993).
6. R. Devaney, An introduction to chaotic dynamical systems, 2nd. ed., Addison-Wesley,

(1989).
7. S. N. Elaydi, Discrete chaos, with applications in science and engineering, 2nd. ed.

Chapman and Hall/CRC, (2007).
8. J. Milnor, Cubic polynomial maps with periodic critical orbit, Part I. Complex Dynam-

ics, Family and Friends . Ed. D. Schleicher. A. K. Peters Ltd, Wellesley, MA, (2009).
9. J. Milnor, Cubic polynomial maps with periodic critical orbit, Part II. Escape Regions,

Stony Brook IMS Preprint, (2009/3).
10. J. Palis, A global view of dynamics and a conjecture of the denseness of finitude of

attractors, Astérique, 261, (2000), 335–347.
11. P. Roesch, Cubic polynomials with a parabolic point, Ergod. Th. and Dynam. Sys. 30,

(2010), 1843–1867.


