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Abstract The valuation of options is an essential topic in the financial mar-
kets, and barrier options represent a widely utilized category of options that
may gain or lose value once the price of the underlying asset hits a specified
threshold. A double barrier option includes two barriers, one above and one
below the current stock price. It is classified as path dependent due to the fact
that the holder’s return is influenced by the stock price’s breach of these bar-
riers. The double barrier option contract defines three specific payoffs, which
are contingent upon whether the upper barrier or lower barrier is breached, or
if there is no breach of either barrier throughout the option’s duration. In this
paper, pricing of the double barrier options when the underlying asset price
follows the uncertain stock model is investigated, and also pricing formulas for
different types of double barrier options (knock-in and knock-out) are derived
by α-paths of uncertain differential equations in the uncertain environment.

B. Abbasi (Corresponding Author)
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences,
Semnan University
Tel.: +98-23-31261238
E-mail: b.abbasi@semnan.ac.ir

F. Omidi
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences,
Semnan University
E-mail: omidi@semnan.ac.ir

K. Nouri
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences,
Semnan University
E-mail: Knouri@semnan.ac.ir

L. Torkzadeh
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences,
Semnan University
E-mail: torkzadeh@semnan.ac.ir



ARTIC
LE

IN
PRESS

2 Behzad Abbasi et al.

Keywords Option pricing · Double barrier option · Stock model · Uncertain
environment · Uncertain differential equations.

Mathematics Subject Classification (2010) 91G20 · 91-10 · 60K37 ·
90C70 · 91B86 · 35A09

1 Introduction

Within the realm of financial markets, options are considered an exceptional
financial instrument, and their pricing remains a pivotal focus in mathematical
finance. In contrast, barrier options and vanilla options exhibit similarities,
differing primarily in that a barrier option is either activated or deactivated
when the underlying asset’s price touches with the barrier price before the
option’s maturity. Barrier options have been available for trading in the over-
the-counter (OTC) market since 1967 and have since become the most popular
category of exotic options.

Prior methodologies for pricing options have heavily relied on the Black-
Scholes model [1] and Merton’s [19] option pricing theory, employing stochastic
differential equations (SDEs) to represent the price dynamics of the underlying
assets.Merton [19] initially introduced the concept of pricing rational options,
later expanding his work to include down and out options. Following this, Rich
[23] established a framework for pricing barrier options. Subsequently, the fo-
cus shifted towards investigating various methodologies for valuing these op-
tions. For example, Nouri, Abbasi et al. [20,21] introduced an enhanced Monte
Carlo algorithm aimed at pricing various types of barrier and double barrier
options. Meanwhile, [18] employed a Lie-algebraic approach to determine the
value of moving barrier options, and [10] conducted an analytical study on
the valuation of American double barrier options. [7] conducted an analysis
of double barrier option pricing through the application of a regime-switching
exponential mean-reverting process. In 2013, Liu [17] proposed that the use of
stochastic differential equations to define the stock price process is unsuitable
and results in a significant paradox. This perspective is supported by empirical
evidence, which indicates that the peak of the distribution of underlying as-
sets exceeds that of the normal probability distribution, while the tails exhibit
greater heaviness.

However, numerous empirical studies have demonstrated that the prices of
underlying assets do not conform to the principles of probability and random-
ness. Instead, financial markets are influenced by a combination of randomness
and human uncertainty. The degree of investor belief plays a significant role
in this, as investors tend to base their decisions on beliefs rather than proba-
bilities. Kahneman [11] pointed out that the variance in beliefs is much more
extensive compared to that of frequencies.

In 2004, Cont and Tankov [6] utilized jump-diffusion models to represent
uncertainty, illustrating that these models have sophisticated structures ben-
eficial for asset pricing. In 2007, Liu [12] advanced the theory of uncertainty
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within the framework of uncertain measures, enhancing the modeling of un-
certain phenomena by addressing the concept of belief degrees. In 2008, he
introduced an uncertain process [13]. Based on it, researchers in [4,16,26,27]
developed methods for solving uncertain differential equations (UDEs). Also,
Chen and Liu [4] have established the existence and uniqueness theorem per-
taining to the solutions of UDEs. Furthermore, Liu [14] demonstrated the
stability of UDEs. In 2009, Liu [14] also formulated various equations for op-
tion pricing utilizing uncertain stock models. After that, Peng and Yao [22],
Yu [29], Chen [3], Yao [28], and Ji and Zhou [8] dedicated significant atten-
tion to the exploration of uncertain stock pricing models. In addition, Chen
[2] formulated a pricing equation for American options in 2011. In 2020, Jia
and Chen [9] disclosed several compelling discoveries related to the pricing
formulas of knock-in barrier options, grounded in an uncertain stock pricing
model that includes a floating interest rate. Zhou [8] placed significant empha-
sis on the analysis of uncertain stock pricing models. In a related development,
Chen [2] introduced a formula for American option pricing in 2011. In 2020,
Jia and Chen [9] revealed several intriguing insights into the pricing formulas
for knock-in barrier options, which were based on an uncertain stock pricing
model featuring a floating interest rate. That same year, Rong et al. [24] ex-
amined pricing formulas for American barrier options, while Yang et al. [25]
focused on strategies for assessing the pricing of Asian barrier options in an
uncertain environment.

In the following, Section 2 will cover the necessary preliminary informa-
tion. Then, for as much as uncertain space is more accorded to real decision
problems, Section 3 will present the uncertain stock model for stock pricing in
uncertain environments. Section 4 will demonstrate the pricing formulas for
double barrier options, encompassing both knock-in and knock-out options, in
relation to an uncertain stock model. The paper will conclude with a summary
in Section 5.

2 Preliminaries

Suppose L be a σ-algebra on a non-empty set Γ (universal set). If M is a set
function M : L → [0, 1] and it satisfies the following axioms:
1: (Normality axiom) M(Γ ) = 1;
2: (Subadditivity axiom) For each sequence of events {Θj} that can be counted,

we have
M(

∞∪
j=1

Θj) ≤
∞∑
j=1

M(Θj)

3: (Duality axiom) M(Θ) +M(Θc) = 1 for every event Θ;
Then, (Γ,L) is a measurable space, and the triplet (Γ,L,M) is an uncertain
space.

Definition 1 [14]. The set function M, which satisfies the above axioms is
called an uncertain measure.
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5: (Product Axiom) [14]. Let the triple (Γk, Lk,Mk), where Γ = Γ1×Γ2×· · ·×
Γk and L = L1×L2×· · ·×Lk be uncertainty spaces for k = 1, 2, . . . , n, the
product uncertain measure M is an uncertain measure on the σ -algebra
satisfying

M(

∞∏
k=1

Θk) ≤
∞∧
k=1

Mk(Θk)

where Θk, for k = 1, 2, . . . , n are arbitrary chosen events from Lk, respec-
tively.

Definition 2 [15]. The uncertainty distribution for an uncertain variable such
as η is defined by function Ψ : R → [0, 1] that Ψ(x) = M{η ≤ x}.

Definition 3 Following uncertainty distribution is called normal

Ψ(x) =
(
1 + exp

(
π(e− x)√

3σ

))−1

, x ∈ R. (1)

If η be an uncertain variable, in this case σ > 0 and e are real numbers and
it is shown by N (e, σ). The normal uncertaintly distribution can be called
standard, if e be equal to 0 and σ be equal to 1.
The inverse uncertaintly distribution of η denoted by Ψ−1(α), α ∈ (0, 1) and
the expected value of an uncertain variable η is defined as

E[η] =

∫ 1

0

Ψ−1(α)dα (2)

Definition 4 [5] Let α be a number between 0 and 1. An uncertain differential
equation

dXt = f(t,Xt)dt+ g(t,Xt)dCt, (3)

is said to have an α-path Xα
t if it solves the corresponding ordinary diferential

equation (ODE)

dXα
t = f(t,Xα

t )dt+ |g(t,Xα
t )|Ψ−1(α)dt, (4)

where Ψ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Ψ−1(α) =

√
3

π
ln

α

1− α
(5)

Definition 5 [14] Liu process is an uncertain process Ct which have bellow
properties:

1) C0 = 0,
2) Ct has independent and stationary increments,
3) almost all sample paths are Lipschitz continuous,
4) all increments Cs+t−Cs are normal uncertain variables with expected value

0 and variance t2.
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Theorem 1 [26] Let Xt be the solution of the UDE eq.(3) and Xα
t be the

solution and α-path of ODE eq.(4). Then

M{Xt ≤ Xα
t , ∀t ∈ [0, T ]} = α,

M{Xt > Xα
t , ∀t ∈ [0, T ]} = 1− α

Theorem 2 [28] Assume that η1, η2, . . . , ηm, . . . , ηn are independent uncer-
tain variables and Ψ1, Ψ2, . . . , Ψm, . . . , Ψn be regular uncertainty distributions of
these variables, respectively. if the function f(x1, x2, . . . , xm, xm+1, . . . , xn) is
strictly increasing function with respect to x1, x2, . . . , xm and strictly decreas-
ing function with respect to xm+1, xm+2, . . . , xn, then the uncertain process
η = f(η1, . . . , ηm, . . . , ηn) has an inverse uncertainty distribution

Ψ−1(α) = f(Ψ−1
1 (α), . . . , Ψ−1

m (α), . . . , Ψ−1
m+1(1− α), . . . , Ψ−1

n (1− α))

where Ψ−1(α) = Xα
t (α− path of Xt)

3 Uncertain stock model for barrier option pricing

Assum that the stock price St follows,{
dSt = µStdt+ σStdCt

dpt = rptdt
(6)

where Pt is the bond price, positive constants r, µ, σ are the risk-less interest
rate, log-drift and log-diffusion respectively, and Ct represents a Liu process.
Theorem 3 Assume that the stock price follows

dSt = µStdt+ σStdCt (7)

where St is the stock price at the moment t. Then we obtain an α-path for St

as
Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) (8)

Proof . According to Definition[4], we have

dSα
t = µSα

t dt+ σ|Sα
t |Φ−1(α)dt

so
dSα

t

Sα
t

= µdt+

√
3σ

π
ln

α

1− α
dt

and
dlnSα

t = µdt+

√
3σ

π
ln

α

1− α
dt

By solving the above differential equation we have

Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) (9)
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4 double barrier options

In double barrier options, one barrier is established above the current stock
price, and the other is below it. Since the payoff of the option depends on the
behavior of the stock price process due to these two obstacles, thus classifying
it as a path-dependent option. Throughout the duration of double barrier
options, the payoff can be categorized into three types, depending on whether
the upper barrier, the lower barrier, or neither is breached. When the payoff
of an option diminishes upon reaching the barrier, that barrier is deemed
worthless; conversely, if the payoff rises, the barrier is considered valuable.
One of the aspect of the barrier is its potential use for the throughout the
life of the option or for a segment of the life of the option. In this section,
we have presented the formula for pricing double barrier options, which asset
price follows Eq [6].

4.1 European knock-in options

One variant of barrier options is the knock-in option, which is activated only
when the underlying asset exceeds a designated price level. This condition
restricts traders to buying or selling this option solely at the moment the asset’s
price attains the predetermined level. If the knock-in price is breached at any
time before the option’s maturity date, the payoff of the option is converted
into a vanilla option, and the knock-in barrier option expires without value.
In this section, we provide the formula for pricing European knock-in options,
where the asset price follows Eq [6].

4.1.1 Pricing formula for double knock-in call option

Consider a double barrier option which the lower barrier level is BL, the upper
barrier level is BU , the exercise price is K, and the expiration time is T . If
before the maturity T , the underlying asset price St hits the lower or upper
barrier level and exceeds them, then this call option will become into existence,
and its payoff will be max(St − K, 0) on the maturity date. Now we assign
η+ = max(η, 0) and apply an indicator function

IB(η) =

{
1, St < BL or St > BU

0, BL < η < BU

Hence, the payoff on the maturity time is written as;

payoff = (ST −K)+(IB(St)) (10)

By taking into account the discount rate on the initial date, the discounted
expectation of payoff is

Bdki = e−rT (ST −K)+(IB(St)) (11)
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and a price of this kind of double barrier options is

f c
dki = E[Bdki] = E[e−rT (ST −K)+(IB(St))] (12)

Theorem 4 Consider a double knock-in call option for stock pricing model
that underlying uncertain Eq. [6] has a lower barrier level BL, upper barrier
level BU , exercise price K, and the expiration time T . Then the price of this
option is defined by

f c
dki = e−rT [

∫ θ0

0

(Sα
T −K)+dα+

∫ 1

θ1

(Sα
T −K)+dα] (13)

where

θ0 =

exp[
π√
3σt

(ln(BL

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BL

S0
)− µt)]

(14)

and

θ1 =

exp[
π√
3σt

(ln(BU

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BU

S0
)− µt)]

(15)

and
Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) (16)

Proof . Note that
IB(S

α
t ) = 1 (17)

if and only if
Sα
t < BL or Sα

t > BU (18)
In addition

S0exp(µt+

√
3σt

π
ln

α

1− α
) < BL

⇒µt+

√
3σt

π
ln

α

1− α
< ln(

BL

S0
)

⇒ π√
3σt

(ln(
BL

S0
)− µt) > ln

α

1− α

By taking
M =

π√
3σt

(ln(
BL

S0
)− µt) (19)

we have
eM >

α

1− α
(20)

then
α <

eM

1 + eM
= θ0 (21)
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On the other hand

S0exp(µt+

√
3σt

π
ln

α

1− α
) > BU

⇒µt+

√
3σt

π
ln

α

1− α
> ln(

BU

S0
)

⇒ π√
3σt

(ln(
BU

S0
)− µt) < ln

α

1− α

By taking
N =

π√
3σt

(ln(
BU

S0
)− µt) (22)

we have
eN <

α

1− α
(23)

then
α >

eN

1 + eN
= θ1 (24)

Example 1 Assume the initial stock price S0 = 8, risk-less interest rate r =
0.03, lower barrier level BL = 6, upper barrier level BU = 12, strike price
K = 20, time to maturity T = 15, log-diffusion σ = 0.05 and log-drift µ = 0.04.
Then the price of double knock-in call option is 3.4394.

100 200 300 400 500 600 700 800 900 1000
2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

number of steps

op
tin

 p
ric

e

Fig. 1 The barrier option price fc
dki with respect to different step N in Example 1.
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4.1.2 Pricing formula for double knock-in put option

Consider a double barrier option which the lower barrier level is BL, the upper
barrier level is BU , the exercise price is K, and the expiration time is T . If
before the maturity T , the underlying asset price St hits the lower or upper
barrier level and exceeds them, then this call option will become into existence,
and its payoff will be max(K − St, 0) on the maturity date. Now we assign
η+ = max(η, 0) and apply an indicator function

IB(η) =

{
1, St < BL or St > BU

0, BL < η < BU

Hence, the payoff on the maturity time is written as;
payoff = (K − ST )

+(IB(St)) (25)
By taking into account the discount rate on the initial date, the discounted
expectation of payoff is

Bdki = e−rT (K − ST )
+(IB(St)) (26)

and a price of this kind of double barrier options is
fp
dki = E[Bdki] = E[e−rT (K − ST )

+(IB(St))] (27)
Theorem 5 Consider a double knock-in put option for stock pricing model
that underlying uncertain Eq. [6] has a lower barrier level BL, upper barrier
level BU , exercise price K, and the expiration time T . Then the price of this
option is defined by

fp
dki = e−rT [

∫ θ0

0

(K − Sα
T )

+dα+

∫ 1

θ1

(K − Sα
T )

+dα] (28)

where

θ0 =

exp[
π√
3σt

(ln(BL

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BL

S0
)− µt)]

(29)

and

θ1 =

exp[
π√
3σt

(ln(BU

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BU

S0
)− µt)]

(30)

and
Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) (31)

Proof . Similar to theorem 4 it will be proved.
Example 2 Assume the initial stock price S0 = 10, risk-less interest rate r =
0.03, lower barrier level BL = 8, upper barrier level BU = 12, strike price
K = 15, time to maturity T = 15, log-diffusion σ = 0.05 and log-drift µ =
0.04.Then the price of double knock-in put option is 1.2967.
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1.27

1.275

1.28

1.285

1.29

1.295

1.3

number of steps

op
tin

 p
ric

e

Fig. 2 The barrier option price fp
dki with respect to different step N in Example 2.

4.2 European knock-out options

A knock-out option is a type of barrier option that if the price of the underlying
asset does not exceed a predetermined barrier level throughout the option’s
duration, the option will yield a payoff. However, should the asset’s price
surpass this barrier level at any time before the maturity date T , the payoff
is rendered null. In this section, we have presented the formula for pricing
European knock-out option, which asset price follows Eq [6].

4.2.1 Pricing formula for double knock-out call option

Consider a double barrier option which the lower barrier level is BL, the upper
barrier level is BU , the exercise price is K, and the expiration time is T . If
before the maturity T , the spot price St always be between the lower barrier
level BL and upper barrier level BU , then this call option will become into
existence, and its payoff will be max(St−K, 0) on the maturity date. Now we
assign η+ = max(η, 0) and apply an indicator function

IB(η) =

{
1, BL < η < BU

0, η < BL or η > BU

Hence, the payoff on the maturity time is written as;

payoff = (ST −K)+(IB(St)) (32)
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By taking into account the discount rate on the initial date, the discounted
expectation of payoff is

Bdko = e−rT (ST −K)+(IB(St)) (33)

and a price of this kind of double barrier options is

f c
dko = E[Bdko] = E[e−rT (ST −K)+(IB(St))] (34)

Theorem 6 Consider a double knock-out call option for stock pricing model
that underlying uncertain Eq. [6] has a lower barrier level BL, upper barrier
level BU , exercise price K, and the expiration time T . Then the price of this
option is defined by

f c
dko = e−rT

∫ θ1

θ0

(Sα
T −K)+dα (35)

where

θ0 =

exp[
π√
3σt

(ln(BL

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BL

S0
)− µt)]

(36)

and

θ1 =

exp[
π√
3σt

(ln(BU

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BU

S0
)− µt)]

(37)

and

Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) (38)

Proof . Note that
IB(S

α
t ) = 1 (39)

if and only if
BL < Sα

t < BU (40)

In addition

BL < Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) < BU

⇒ln(
BL

S0
) < µt+

√
3σt

π
ln

α

1− α
< ln(

BU

S0
)

⇒ π√
3σt

(ln(
BL

S0
)− µt) < ln

α

1− α
<

π√
3σt

(ln(
BU

S0
)− µt)

By taking
M =

π√
3σt

(ln(
BL

S0
)− µt) (41)
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and
N =

π√
3σt

(ln(
BU

S0
)− µt) (42)

we have
eM <

α

1− α
< eN (43)

then

θ0 =
eM

1 + eM
< α <

eN

1 + eN
= θ1 (44)

Example 3 Assume the initial stock price S0 = 10, risk-less interest rate r =
0.03, lower barrier level BL = 8, upper barrier level BU = 25, strike price
K = 25, time to maturity T = 15, log-diffusion σ = 0.05 and log-drift µ = 0.04.
Then the price of knock-out call option is 4.3286.

100 200 300 400 500 600 700 800 900 1000
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

number of steps

op
tin

 p
ric

e

Fig. 3 The double barrier option price fc
dko with respect to different step N in Example 3.

4.2.2 Pricing formula for double knock-out put option

Consider a double barrier option which the lower barrier level is BL, the upper
barrier level is BU , the exercise price is K, and the expiration time is T . If
before the maturity T , the spot price St always be between the lower barrier
level BL and upper barrier level BU , then this call option will become into
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existence, and its payoff will be max(K−St, 0) on the maturity date. Now we
assign η+ = max(η, 0) and apply an indicator function

IB(η) =

{
1, BL < η < BU

0, η < BL or η > BU

Hence, the payoff on the maturity time is written as;

payoff = (K − ST )
+(IB(St)) (45)

By taking into account the discount rate on the initial date, the discounted
expectation of payoff is

Bdko = e−rT (K − ST )
+(IB(St)) (46)

and a price of this kind of double barrier options is

fp
dko = E[Bdko] = E[e−rT (K − ST )

+(IB(St))] (47)

Theorem 7 Consider a double knock-out put option for stock pricing model
that underlying uncertain Eq. [6] has a lower barrier level BL, upper barrier
level BU , exercise price K, and the expiration time T . Then the price of this
option is defined by

fp
dko = e−rT

∫ θ1

θ0

(K − Sα
T )

+dα (48)

where

θ0 =

exp[
π√
3σt

(ln(BL

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BL

S0
)− µt)]

(49)

and

θ1 =

exp[
π√
3σt

(ln(BU

S0
)− µt)]

1 + exp[
π√
3σt

(ln(BU

S0
)− µt)]

(50)

and

Sα
t = S0exp(µt+

√
3σt

π
ln

α

1− α
) (51)

Proof . Similar to theorem 6 it will be proved.

Example 4 Assume the initial stock price S0 = 10, risk-less interest rate r =
0.03, lower barrier level BL = 8, upper barrier level BU = 25, strike price
K = 20, time to maturity T = 15, log-diffusion σ = 0.05 and log-drift µ = 0.04.
Then the price of double knock-out put option is 2.8072.
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100 200 300 400 500 600 700 800 900 1000
2.775

2.78

2.785

2.79

2.795

2.8

2.805

2.81

2.815

number of steps

op
tin

 p
ric

e

Fig. 4 The barrier option price fp
dko with respect to different step N in Example 4.

5 Conclusion

Since the probability space and randomness are insufficient for effectively sim-
ulating investor decisions, prompting many researchers to recommend Liu’s
uncertain space for these applications. In this study, we introduce an uncer-
tain process to validate the double barrier option pricing formula. The pricing
formulas for both knocked-in and knocked-out options are derived through
α-paths of uncertain differential equations (UDEs) within this uncertain en-
vironment. Furthermore, several numerical examples are provided to demon-
strate the pricing of double barrier options using the proposed model. Further
research may use other types of exotic options on this uncertain stock pric-
ing model with similar conditions and may consider multi-asset options in the
uncertain environment and derive formulas for option pricing.
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