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Abstract

For an undirected graph G, and an abelian group A, an A-magic labelling is an assignment of non-zero element of A, to the edges

of G, such that the sum of the values of all edges incident with each vertex is constant. A constant on magic sum is called an index

set of G. Shiu and Low proved that, zero is in the index set of complete multipartite graph. In this paper, for t ≥ 2 we determine

the index set of the complete multipartite graph Kn1,...,nt , where ni ≥ 2 (for i = 1, . . . , t).
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1 Introduction
For an abelian group A, written additively, any mapping l : E(G)−→ A\{0} is called a labeling. Given a labeling on the edge set of G, one

can introduce a vertex labeling l+ : V (G)−→ A by

l+(v) = ∑
uv∈E(G)

l(uv).

A graph G is said to be A-magic, if there is a labeling l : E(G) −→ A \ {0}, such that for each vertex v, the sum of values of all edges

incident with v, is a constant; that is, l+(v) = c, for some c ∈ A. In general, a graph G may admit more than one labeling to become A-magic.

For example, if |A| > 2 and l : E(G) −→ A\{0} is a magic labeling of G with sum c, then λ : E(G) −→ A\{0}, the inverse labeling of l,

defined by λ (uv) =−l(uv) will provide another magic labeling of G with sum −c. Recently the labeling of graphs have been attracted many

researchers to itself, for instance see [1–3, 7, 9]. We use Kn1,...,nk to denote the complete multipartite graph with part sizes n1, . . . ,nk. We

denote the complete graph of order n by Kn. Also, if we decompose E(G) into E(H1), . . . ,E(Hk), then we write G = H1 ⊕·· ·⊕Hk. Within

the mathematical literature, various definition of magic graphs have been introduced. The original concept of an A-magic graph is due to

Sedlaced [10,11], who defined it to be a graph with real-valued edge labeling such that distinct edges have distinct non-negative values, and

the sum of the values of edges incident with a particular vertex is the same for all vertices. Over the years, there has been a great research

interest in graph labeling problems. In fact, many different graph labelings have been introduced in the literature. The interested readers is

referred to Wallis’ [14] recent monograph on magic graphs. For convenience, a Zh-magic graph will be referred to as an h-magic graph. A

constant of a magic sum is called an index of G, an index for short, and we write IA(G) = {r : G is A-magic with index r}. An h-magic

graph G is said to have h-zero-sum magic labeling if there is a magic labeling of G in Zh that induces a vertex labeling with sum 0. The null
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set of a graph G, denoted by N(G), is the set of all natural numbers h ∈ N such G admits a zero-sum magic labeling in Zh. Salehi in [8]

determined the null set of complete graphs.

Theorem 1. If n ≥ 4, then

N(Kn) =

{
N n is odd;

N\{2} n is even.

Also, Shiu and M. Low determined in [12], the null set of complete multipartite graphs over an abelian group A.

Theorem 2. Let A, (|A| ≥ 3) be an abelian group and t,ni ≥ 2, (i = 1, . . . , t) be positive integers. Then Kn1,...,nt admits an A-zero-sum magic

labeling.

2 The Index Set of Complete and Complete Bipartite Graphs
In this section we determine the index set of the complete and complete bipartite graphs for an abelian group Zh, h ≥ 2. A k-factor of a

graph G is a k-regular spanning subgraph of G and a k-factorization is partition the edges of the graph into disjoint k-factors. A graph G is

said to be k-factorable if it admits a k-factorization. First, we need the following results.

Theorem 3. [4] Every complete graph of order 2n has 1-factorization.

Theorem 4. ([10, p.140]) Every regular graph of even degree has 2-factorization.

Theorem 5. [13] Let G be an r-regular graph (r ≥ 2) which admits a 1-factor, then Ih(G) = Zh for all h ≥ 3.

Remark 1. Let G be a graph, l : E(G)→ Zh \{0} be an edge labeling and 0 ̸= c ∈ Ih(G), then we have

2 ∑
e∈E(G)

l(e) = c|V (G)| (mod h).

Also, it is obvious that G admits a 2-magic labeling with sum 1 if and only if the degree of every vertex is odd.

Theorem 6. Let h ≥ 3 be positive integers. Then following statements hold:

(i) Ih(K2) = Zh \{0}

(ii) Ih(K3) =

{
Zh \{0} h is odd;

2Zh otherwise.

(iii) Let n ≥ 4. Then

Ih(Kn) =

{
2Zh if n is odd and h is even;

Zh otherwise.

Proof. (i) It is obvious.

(ii) Let x ∈ Zh \ {0}. Note that in any h-magic labeling of an odd cycle, the edges should alternatively be the same value. So, if

h is odd, then 0 ̸∈ Ih(K3). Suppose that h = 2k + 1. If we assign value (k + 1)x to all edges of K3, then x ∈ Ih(K3). Therefore,

Ih(K3) = Zh \{0}. Now, assume that h = 2k. By Remark 1, if x is odd, then x ̸∈ Ih(K3). Let x = 2t, for some t. If we assign value t to all

edges of K3, then x ∈ Ih(K3) and if we assign value k to all edges of K3, then 0 ∈ Ih(K3). Thus, Ih(K3) = 2Zh.

(iii) By Theorem 1, 0 ∈ Ih(Kn). Now, we show that Kn has an h-magic labeling with sum 1. Consider two following cases:

Case 1. If n = 2r + 1, then by Theorem 4, Kn has a 2-factorization. Let F1, . . . ,Fr be its 2-factors. First suppose that h = 2k + 1.

If r is odd, then assign value k+1 to the edges of F1 and value (−1)i to the edges of Fi, for i = 2, . . . ,r. If r is even, then assign value k and

1 to the edges of F1 and F2, respectively and for i = 3, . . . ,r(r ≥ 3), assign value (−1)i to the edges of Fi. Therefore, Kn admits a h-magic
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labeling with sum 1. So, Ih(Kn) = Zh.

Now, assume that h = 2k. By Remark 1, if c ∈ Zh \ {0} is odd, then c ̸∈ Ih(Kn). We prove that 2 ∈ Ih(Kn). If r is odd, then

assign value 1 to the edges of F1 and for i = 2, . . . ,r, assign value (−1)i to the edges of Fi. If r is even, then assign value −1 and 2

to the edges of F1 and F2, respectively and for i = 3, . . . ,r, assign (−1)i to the edges of Fi. Therefore, if k is odd, then by Remark 1,

Ih(Kn) = 2Zh \{k}. Now, if k = 2t, then assign value t −1 and 1 to the edges of F1 and F2, respectively and value (−1)i to the edges of Fi.

So, k ∈ Ih(Kn), as desired.

Case 2. If n is even, then by Theorem 3, Kn has 1-factorization. Let E1, . . . ,En−1 be a 1-factorization for Kn. We assign value 1

to the edges of E1 and value (−1)i to the edges of Ei (2 ≤ i ≤ n−1). So, 1 ∈ Ih(Kn) and the proof is complete.

Theorem 7. Let h ≥ 3, m,n ≥ 2 be positive integers. Then Ih(Km,n) = Zh if and only if m = n (mod h).

Proof. Let Ih(Km,n) = Zh. Since 1 ∈ Ih(Km,n), there is an edge labeling l : E(Km,n) → Zh \ {0} such that for every v ∈ V (G), l+(v) = 1

(mod h). By double counting we have, m = ∑e∈E(Km,n) l(e) = n (mod h). Thus m = n (mod h).

Conversely, by Theorem 2, Km,n admits an h-zero-sum magic labeling. Let {1,2, . . . ,m}, {1
′
,2

′
, . . . ,n

′} be the vertex sets of two

parts of Km,n and with no loss of generality assume that m ≥ n. We partition all edges of Km,n as follows:

Km,n = Kn,n ⊕Km−n,n.

By Theorem 5, Ih(Kn,n) = Zh. We claim that Km−n,n has a magic labeling in Zh such that for every vertex v of part of size n, the sum

of values of all edges incident with v is 0 and for every vertex w of part of size m− n, the sum of values of all edges incident with w is 1.

Consider two cases:

Case 1. Let n be odd. Assign value (−1)i′+1 to all edges incident with i′ (1′ ≤ i′ ≤ n′).

Figure 1. Km−n,n

Case 2. Let n be even. Consider the following edge labeling of Km−n,n for all edges incident with i′ (1′ ≤ i′ ≤ n′).

2, . . . ,2, −1, . . . ,−1, 1, . . . ,1, −1, . . . ,−1, . . . 1, . . . ,1, −1, . . . ,−1.

Hence 1∈ Ih(Km,n) (See Figure 2, (a)). If h is odd, then Ih(Km,n)=Zh. If h= 2k, then the above edge labeling shows that Zh\{k}⊆ Ih(Km,n).

The following edge labeling of Km−n,n for all edges incident with i′ (1′ ≤ i′ ≤ n′) shows that k ∈ Ih(Km,n) and so Ih(Km,n) = Zh (See Figure

2, (b)).

k−1, . . . ,k−1, 1, . . . ,1, 1, . . . ,1, −1, . . . ,−1, . . . 1, . . . ,1, −1, . . . ,−1.
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The proof is complete.

Figure 2. Km−n,n

3 The Index Set of the Complete Multipartite Graphs
In this section we would like to determine the index set of the complete multipartite graphs over an abelian group Zh, h ≥ 2.

From now on, we denote the vertex set of part of size ni by Xi in Kn1,...,nt , for i = 1, . . . , t.

Lemma 1. Let h ≥ 3, m,n, t ≥ 2 be positive integers and m = n = t (mod h). Then the following holds:

Ih(Km,n,t) =

{
2Zh if m+n+ t is odd and h is even;

Zh otherwise.

Proof. By Theorem 2, Km,n,t has an h-zero-sum magic labeling. We partition all edges of Km,n,t as follows:

Km,n,t = Km,n ⊕Kn,t ⊕Km,t .

Let x ∈ Zh \ {0}. First suppose that h = 2k + 1. By Theorem 7, x(k + 1) ∈ Ih(Km,n), x(k + 1) ∈ Ih(Kn,t) and x(k + 1) ∈ Ih(Km,t). So,

x ∈ Ih(Km,n,t), as desired. Now, assume that h is even and x = 2t. By Theorem 7, t ∈ Ih(Km,n), t ∈ Ih(Kn,t) and t ∈ Ih(Km,t). So,

x ∈ Ih(Km,n,t). If m+n+ t and c ∈ Zh \{0} are odd, then by Remark 1, c ̸∈ Ih(Km,n,t). Thus Ih(Km,n,t) = 2Zh. Now, suppose that m+n+ t

is even. If m = n = t, then by Dirac Theorem [8, p.288], Kn,n,n has a hamilton cycle and so it contains a 1-factor. Thus by Theorem 5,

Ih(Kn,n,n) = Zh. Let X1, X2 and X3 be three parts of Km,n,t such that |X1| = m, |X2| = n and |X3| = t. Let Y2 ⊆ X2 and Y3 ⊆ X3 be two sets

such that |Y2|= |Y3|= m. Also, let W2 = X2 \Y2, W3 = X3 \Y3. We consider two cases:

Case 1. Let m < n ≤ t. We partition all edges of Km,n,t as follows:

Km,n,t = KX1,Y2,Y3 ⊕KW2,W3 ⊕KW2,X1∪Y3 ⊕KW3,X1∪Y2 .

By Theorem 2, both KW2,X1∪Y3 and KW3,X1∪Y2 have an h-zero-sum magic labeling. Also, as we did before, Ih(KX1,Y2,Y3) =Zh and by Theorem

7, Ih(KW2,W3) = Zh. Therefore, Ih(Km,n,t) = Zh.

Case 2. Let m = n < t. We partition all edges of Km,n,t as follows:

Km,n,t = KX1,X2,Y3 ⊕KX1,W3 ⊕KX2,W3 .
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By Theorem 2, KX1,W3 has an h-zero-sum magic labeling and as we did before, Ih(KX1,X2,Y3) = Zh. Now, let x ∈ Zh \{0}. We would like to

assign some values to the edges of KX2,W3 such that every vertex of part of size X2 has vertex labeling 0 and every vertex of part of size W3

has vertex labeling x. If x ̸= 1, then the following edge labeling of KX2,W3 shows that x ∈ Ih(KX2,W3).

x−1, . . . ,x−1, 1, . . . ,1, 1, . . . ,1 −1, . . . ,−1 . . . 1, . . . ,1, −1, . . . ,−1,

where the size of each block is |W3|. Also, to obtain the index 1 consider the following edge labeling of KX2,W3 .

2, . . . ,2, −1, . . . ,−1, 1, . . . ,1 −1, . . . ,−1 . . . 1, . . . ,1, −1, . . . ,−1,

where the size of each block is |W3|. So, Ih(Km,n,t) = Zh and the proof is complete.

Theorem 8. Let h, t ≥ 3 and ni ≥ 2 (i = 1, . . . , t) be positive integers and n1 = · · ·= nt (mod h). Then the following holds:

Ih(Kn1,...,nt ) =

{
2Zh if n1 + · · ·+nt is odd and h is even;

Zh otherwise.

Proof. By Theorem 2, Kn1,...,nt has an h-zero-sum magic labeling. Note that by Lemma 1 we can assume that t ≥ 4. Consider two cases:

Case 1. Suppose that t is even. We partition all edges of Kn1,...,nt as follows:

Kn1,...,nt = Kn1,n2 ⊕Kn3,n4 ⊕ . . .⊕Knt−1,nt ⊕H,

where H is a complete t
2 -partite graph with parts X2i−1 ∪X2i, (1 ≤ i ≤ t

2 ). By Theorems 2 and 7, H has an h-zero-sum magic labeling and

Ih(Kn2i−1,n2i) = Zh, (1 ≤ i ≤ t
2
),

as desired.

Case 2. If t is odd, then we partition all edges of Kn1,...,nt as follows:

Kn1,...,nt = Kn1,n2,n3 ⊕Kn4,...,nt ⊕H ′,

where H ′ is a complete bipartite graph with parts X1 ∪X2 ∪X3 and X4 ∪ . . .∪Xt . By Theorem 2, H ′ has an h-zero-sum magic labeling. Now,

if h is odd or both h and n1 + · · ·+ nt are even, then by Lemma 1 and Case 1, Ih(Kn1,n2,n3) = Zh and Ih(Kn4,...,nt ) = Zh, respectively, as

desired. Now, assume that |V (G)| = n1 + · · ·+nt is odd and h is even, then by Remark 1, if c ∈ Zh \{0} is odd, then c ̸∈ Ih(Kn1,...,nt ). So,

by Lemma 1 and by Case 1, 2Zh ⊆ Ih(Kn1,n2,n3) and 2Zh ⊆ Ih(Kn4,...,nt ), respectively. So, Ih(Kn1,...,nt ) = 2Zh and the proof is complete.
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