On the Index Set of Complete Multipartite Graphs

Samaneh Bahramian

Received: 14 January 2025 / Accepted: 17 February 2025

Abstract For an undirected graph G, and an abelian group A, an A-magic labelling is an assignment of non-zero element of A, to the edges of G, such that the sum of the values of all edges incident with each vertex is constant. A constant on magic sum is called an index set of G. Shiu and Low proved that, zero is in the index set of complete multipartite graph. In this paper, for $t \ge 2$ we determine the index set of the complete multipartite graph K_{n_1,\ldots,n_t} , where $n_i \ge 2$ (for $i = 1, \ldots, t$).

Keywords Index set \cdot Magic \cdot Null set \cdot Zero-sum

Mathematics Subject Classification (2010) 05C15 · 05C78

1 Introduction

For an abelian group A, written additively, any mapping $l : E(G) \longrightarrow A \setminus \{0\}$ is called a *labeling*. Given a labeling on the edge set of G, one can introduce a vertex labeling $l^+ : V(G) \longrightarrow A$ by

$$l^+(v) = \sum_{uv \in E(G)} l(uv).$$

A graph G is said to be A-magic, if there is a labeling $l : E(G) \longrightarrow A \setminus \{0\}$, such that for each vertex v, the sum of values of all edges incident with v, is a constant; that is, $l^+(v) = c$, for some $c \in A$. In general, a graph G may admit more than one labeling to become A-magic. For example, if |A| > 2and $l : E(G) \longrightarrow A \setminus \{0\}$ is a magic labeling of G with sum c, then λ :

S. Bahramian

Tel.: +98-23-33654040

Semnan Branch, Islamic Azad University, Semnan, Iran

Fax: +98-23-33654040

E-mail: s.bahramian@semnaniau.ac.ir

 $E(G) \longrightarrow A \setminus \{0\}$, the inverse labeling of l, defined by $\lambda(uv) = -l(uv)$ will provide another magic labeling of G with sum -c. Recently the labeling of graphs have been attracted many researchers to itself, for instance see [1-3,7,9]. We use K_{n_1,\ldots,n_k} to denote the complete multipartite graph with part sizes n_1, \ldots, n_k . We denote the complete graph of order n by K_n . Also, if we decompose E(G) into $E(H_1), \ldots, E(H_k)$, then we write $G = H_1 \oplus \cdots \oplus H_k$. Within the mathematical literature, various definition of magic graphs have been introduced. The original concept of an A-magic graph is due to Sedlaced [10,11], who defined it to be a graph with real-valued edge labeling such that distinct edges have distinct non-negative values, and the sum of the values of edges incident with a particular vertex is the same for all vertices. Over the years, there has been a great research interest in graph labeling problems. In fact, many different graph labelings have been introduced in the literature. The interested readers is referred to Wallis' [14] recent monograph on magic graphs. For convenience, a \mathbb{Z}_h -magic graph will be referred to as an *h*-magic graph. A constant of a magic sum is called an index of G, an index for short, and we write $I_A(G) = \{r : G \text{ is } A \text{-magic with index } r\}$. An h-magic graph G is said to have h-zero-sum magic labeling if there is a magic labeling of G in \mathbb{Z}_h that induces a vertex labeling with sum 0. The null set of a graph G, denoted by N(G), is the set of all natural numbers $h \in N$ such G admits a zero-sum magic labeling in \mathbb{Z}_h . Salehi in [8] determined the null set of complete graphs.

Theorem 1 If $n \ge 4$, then

$$N(K_n) = \begin{cases} \mathbb{N} & n \text{ is odd;} \\ \mathbb{N} \setminus \{2\} & n \text{ is even.} \end{cases}$$

Also, Shiu and M. Low determined in [12], the null set of complete multipartite graphs over an abelian group A.

Theorem 2 Let A, $(|A| \ge 3)$ be an abelian group and $t, n_i \ge 2$, (i = 1, ..., t) be positive integers. Then $K_{n_1,...,n_t}$ admits an A-zero-sum magic labeling.

2 The Index set of complete and complete bipartite graphs

In this section we determine the index set of the complete and complete bipartite graphs for an abelian group \mathbb{Z}_h , $h \geq 2$. A k-factor of a graph G is a k-regular spanning subgraph of G and a k-factorization is partition the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. First, we need the following results.

Theorem 3 [4] Every complete graph of order 2n has 1-factorization.

Theorem 4 ([10, p.140]) Every regular graph of even degree has 2-factorization.

Theorem 5 [13] Let G be an r-regular graph $(r \ge 2)$ which admits a 1-factor, then $I_h(G) = \mathbb{Z}_h$ for all $h \ge 3$.

Remark 1 Let G be a graph, $l : E(G) \to \mathbb{Z}_h \setminus \{0\}$ be an edge labeling and $0 \neq c \in I_h(G)$, then we have

$$2\sum_{e\in E(G)} l(e) = c|V(G)| \pmod{h}.$$

Also, it is obvious that G admits a 2-magic labeling with sum 1 if and only if the degree of every vertex is odd.

Theorem 6 Let $h \ge 3$ be positive integers. Then following statements hold:

(i)
$$I_h(K_2) = \mathbb{Z}_h \setminus \{0\}$$

(ii) $I_h(K_3) = \begin{cases} \mathbb{Z}_h \setminus \{0\} \ h \text{ is odd}; \\ 2\mathbb{Z}_h & \text{otherwise.} \end{cases}$

(iii) Let $n \ge 4$. Then

$$\mathbf{I}_h(K_n) = \begin{cases} 2\mathbb{Z}_h \text{ if } n \text{ is odd and } h \text{ is even;} \\ \mathbb{Z}_h \text{ otherwise.} \end{cases}$$

Proof (\mathbf{i}) It is obvious.

(ii) Let $x \in \mathbb{Z}_h \setminus \{0\}$. Note that in any *h*-magic labeling of an odd cycle, the edges should alternatively be the same value. So, if *h* is odd, then $0 \notin I_h(K_3)$. Suppose that h = 2k + 1. If we assign value (k + 1)x to all edges of K_3 , then $x \in I_h(K_3)$. Therefore, $I_h(K_3) = \mathbb{Z}_h \setminus \{0\}$. Now, assume that h = 2k. By Remark 1, if *x* is odd, then $x \notin I_h(K_3)$. Let x = 2t, for some *t*. If we assign value *t* to all edges of K_3 , then $x \in I_h(K_3)$ and if we assign value *k* to all edges of K_3 , then $0 \in I_h(K_3)$. Thus, $I_h(K_3) = 2\mathbb{Z}_h$.

(iii) By Theorem 1, $0 \in I_h(K_n)$. Now, we show that K_n has an *h*-magic labeling with sum 1. Consider two following cases:

Case 1. If n = 2r + 1, then by Theorem 4, K_n has a 2-factorization. Let F_1, \ldots, F_r be its 2-factors. First suppose that h = 2k + 1. If r is odd, then assign value k + 1 to the edges of F_1 and value $(-1)^i$ to the edges of F_1 , for $i = 2, \ldots, r$. If r is even, then assign value k and 1 to the edges of F_1 and F_2 , respectively and for $i = 3, \ldots, r(r \ge 3)$, assign value $(-1)^i$ to the edges of F_i . Therefore, K_n admits a h-magic labeling with sum 1. So, $I_h(K_n) = \mathbb{Z}_h$.

Now, assume that h = 2k. By Remark 1, if $c \in \mathbb{Z}_h \setminus \{0\}$ is odd, then $c \notin I_h(K_n)$. We prove that $2 \in I_h(K_n)$. If r is odd, then assign value 1 to the edges of F_1 and for $i = 2, \ldots, r$, assign value $(-1)^i$ to the edges of F_i . If r is even, then assign value -1 and 2 to the edges of F_1 and F_2 , respectively and for $i = 3, \ldots, r$, assign $(-1)^i$ to the edges of F_i . Therefore, if k is odd, then by Remark 1, $I_h(K_n) = 2\mathbb{Z}_h \setminus \{k\}$. Now, if k = 2t, then assign value t - 1 and 1 to the edges of F_1 and F_2 , respectively and value $(-1)^i$ to the edges of F_i . So, $k \in I_h(K_n)$, as desired.

Case 2. If n is even, then by Theorem 3, K_n has 1-factorization. Let E_1, \ldots, E_{n-1} be a 1-factorization for K_n . We assign value 1 to the edges of E_1 and value $(-1)^i$ to the edges of E_i $(2 \le i \le n-1)$. So, $1 \in I_h(K_n)$ and the proof is complete.

Theorem 7 Let $h \ge 3$, $m, n \ge 2$ be positive integers. Then $I_h(K_{m,n}) = \mathbb{Z}_h$ if and only if $m = n \pmod{h}$.

Proof Let $I_h(K_{m,n}) = \mathbb{Z}_h$. Since $1 \in I_h(K_{m,n})$, there is an edge labeling $l : E(K_{m,n}) \to \mathbb{Z}_h \setminus \{0\}$ such that for every $v \in V(G)$, $l^+(v) = 1 \pmod{h}$. By double counting we have, $m = \sum_{e \in E(K_{m,n})} l(e) = n \pmod{h}$. Thus $m = n \pmod{h}$.

Conversely, by Theorem 2, $K_{m,n}$ admits an *h*-zero-sum magic labeling. Let $\{1, 2, \ldots, m\}, \{1', 2', \ldots, n'\}$ be the vertex sets of two parts of $K_{m,n}$ and with no loss of generality assume that $m \ge n$. We partition all edges of $K_{m,n}$ as follows:

$$K_{m,n} = K_{n,n} \oplus K_{m-n,n}.$$

By Theorem 5, $I_h(K_{n,n}) = \mathbb{Z}_h$. We claim that $K_{m-n,n}$ has a magic labeling in \mathbb{Z}_h such that for every vertex v of part of size n, the sum of values of all edges incident with v is 0 and for every vertex w of part of size m - n, the sum of values of all edges incident with w is 1. Consider two cases:

Case 1. Let n be odd. Assign value $(-1)^{i'+1}$ to all edges incident with i' $(1' \le i' \le n')$.

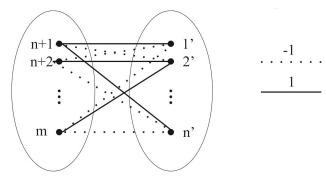


Fig. 1 $K_{m-n,n}$

Case 2. Let *n* be even. Consider the following edge labeling of $K_{m-n,n}$ for all edges incident with i' $(1' \le i' \le n')$.

 $2,\ldots,2,\ -1,\ldots,-1,\ 1,\ldots,1,\ -1,\ldots,-1,\ \ldots\ 1,\ldots,1,\ -1,\ldots,-1.$

Hence $1 \in I_h(K_{m,n})$ (See Figure 2, (a)). If h is odd, then $I_h(K_{m,n}) = \mathbb{Z}_h$. If h = 2k, then the above edge labeling shows that $\mathbb{Z}_h \setminus \{k\} \subseteq I_h(K_{m,n})$. The following edge labeling of $K_{m-n,n}$ for all edges incident with i' $(1' \leq i' \leq n')$ shows that $k \in I_h(K_{m,n})$ and so $I_h(K_{m,n}) = \mathbb{Z}_h$ (See Figure 2, (b)).

 $k-1,\ldots,k-1, 1,\ldots,1, 1,\ldots,1, -1,\ldots,-1, \ldots 1,\ldots,1, -1,\ldots,-1.$

The proof is complete.

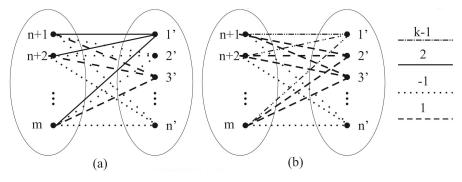


Fig. 2 $K_{m-n,n}$

3 The Index set of the complete multipartite graphs

In this section we would like to determine the index set of the complete multipartite graphs over an abelian group \mathbb{Z}_h , $h \ge 2$.

From now on, we denote the vertex set of part of size n_i by X_i in K_{n_1,\ldots,n_t} , for $i = 1, \ldots, t$.

Lemma 1 Let $h \ge 3$, $m, n, t \ge 2$ be positive integers and $m = n = t \pmod{h}$. Then the following holds:

$$I_h(K_{m,n,t}) = \begin{cases} 2\mathbb{Z}_h & \text{if } m+n+t \text{ is odd and } h \text{ is even};\\ \mathbb{Z}_h & \text{otherwise.} \end{cases}$$

Proof By Theorem 2, $K_{m,n,t}$ has an *h*-zero-sum magic labeling. We partition all edges of $K_{m,n,t}$ as follows:

$$K_{m,n,t} = K_{m,n} \oplus K_{n,t} \oplus K_{m,t}$$

Let $x \in \mathbb{Z}_h \setminus \{0\}$. First suppose that h = 2k + 1. By Theorem 7, $x(k+1) \in I_h(K_{m,n})$, $x(k+1) \in I_h(K_{n,t})$ and $x(k+1) \in I_h(K_{m,t})$. So, $x \in I_h(K_{m,n,t})$, as desired. Now, assume that h is even and x = 2t. By Theorem 7, $t \in I_h(K_{m,n})$, $t \in I_h(K_{n,t})$ and $t \in I_h(K_{m,t})$. So, $x \in I_h(K_{m,n,t})$. If m+n+t and $c \in \mathbb{Z}_h \setminus \{0\}$

are odd, then by Remark 1, $c \notin I_h(K_{m,n,t})$. Thus $I_h(K_{m,n,t}) = 2\mathbb{Z}_h$. Now, suppose that m + n + t is even. If m = n = t, then by Dirac Theorem [8, p.288], $K_{n,n,n}$ has a hamilton cycle and so it contains a 1-factor. Thus by Theorem 5, $I_h(K_{n,n,n}) = \mathbb{Z}_h$. Let X_1 , X_2 and X_3 be three parts of $K_{m,n,t}$ such that $|X_1| = m$, $|X_2| = n$ and $|X_3| = t$. Let $Y_2 \subseteq X_2$ and $Y_3 \subseteq X_3$ be two sets such that $|Y_2| = |Y_3| = m$. Also, let $W_2 = X_2 \setminus Y_2$, $W_3 = X_3 \setminus Y_3$. We consider two cases:

Case 1. Let $m < n \le t$. We partition all edges of $K_{m,n,t}$ as follows:

$$K_{m,n,t} = K_{X_1,Y_2,Y_3} \oplus K_{W_2,W_3} \oplus K_{W_2,X_1 \cup Y_3} \oplus K_{W_3,X_1 \cup Y_2}.$$

By Theorem 2, both $K_{W_2,X_1\cup Y_3}$ and $K_{W_3,X_1\cup Y_2}$ have an *h*-zero-sum magic labeling. Also, as we did before, $I_h(K_{X_1,Y_2,Y_3}) = \mathbb{Z}_h$ and by Theorem 7, $I_h(K_{W_2,W_3}) = \mathbb{Z}_h$. Therefore, $I_h(K_{m,n,t}) = \mathbb{Z}_h$.

Case 2. Let m = n < t. We partition all edges of $K_{m,n,t}$ as follows:

$$K_{m,n,t} = K_{X_1,X_2,Y_3} \oplus K_{X_1,W_3} \oplus K_{X_2,W_3}$$

By Theorem 2, K_{X_1,W_3} has an *h*-zero-sum magic labeling and as we did before, $I_h(K_{X_1,X_2,Y_3}) = \mathbb{Z}_h$. Now, let $x \in \mathbb{Z}_h \setminus \{0\}$. We would like to assign some values to the edges of K_{X_2,W_3} such that every vertex of part of size X_2 has vertex labeling 0 and every vertex of part of size W_3 has vertex labeling x. If $x \neq 1$, then the following edge labeling of K_{X_2,W_3} shows that $x \in I_h(K_{X_2,W_3})$.

 $x - 1, \dots, x - 1, 1, \dots, 1, 1, \dots, 1 - 1, \dots, -1 \dots 1, \dots, 1, -1, \dots, -1,$

where the size of each block is $|W_3|$. Also, to obtain the index 1 consider the following edge labeling of K_{X_2,W_3} .

$$2, \ldots, 2, -1, \ldots, -1, 1, \ldots, 1 - 1, \ldots, -1 \ldots 1, \ldots, 1, -1, \ldots, -1$$

where the size of each block is $|W_3|$. So, $I_h(K_{m,n,t}) = \mathbb{Z}_h$ and the proof is complete.

Theorem 8 Let $h, t \ge 3$ and $n_i \ge 2$ (i = 1, ..., t) be positive integers and $n_1 = \cdots = n_t \pmod{h}$. Then the following holds:

$$I_h(K_{n_1,\dots,n_t}) = \begin{cases} 2\mathbb{Z}_h \text{ if } n_1 + \dots + n_t \text{ is odd and } h \text{ is even};\\ \mathbb{Z}_h \text{ otherwise.} \end{cases}$$

Proof By Theorem 2, $K_{n_1,...,n_t}$ has an *h*-zero-sum magic labeling. Note that by Lemma 1 we can assume that $t \ge 4$. Consider two cases:

Case 1. Suppose that t is even. We partition all edges of $K_{n_1,...,n_t}$ as follows:

$$K_{n_1,\ldots,n_t} = K_{n_1,n_2} \oplus K_{n_3,n_4} \oplus \ldots \oplus K_{n_{t-1},n_t} \oplus H,$$

where H is a complete $\frac{t}{2}$ -partite graph with parts $X_{2i-1} \cup X_{2i}$, $(1 \le i \le \frac{t}{2})$. By Theorems 2 and 7, H has an h-zero-sum magic labeling and

$$I_h(K_{n_{2i-1},n_{2i}}) = \mathbb{Z}_h, \qquad (1 \le i \le \frac{t}{2}),$$

as desired.

Case 2. If t is odd, then we partition all edges of K_{n_1,\ldots,n_t} as follows:

$$K_{n_1,...,n_t} = K_{n_1,n_2,n_3} \oplus K_{n_4,...,n_t} \oplus H',$$

where H' is a complete bipartite graph with parts $X_1 \cup X_2 \cup X_3$ and $X_4 \cup \ldots \cup X_t$. By Theorem 2, H' has an *h*-zero-sum magic labeling. Now, if *h* is odd or both *h* and $n_1 + \cdots + n_t$ are even, then by Lemma 1 and Case 1, $I_h(K_{n_1,n_2,n_3}) = \mathbb{Z}_h$ and $I_h(K_{n_4,\ldots,n_t}) = \mathbb{Z}_h$, respectively, as desired. Now, assume that |V(G)| = $n_1 + \cdots + n_t$ is odd and *h* is even, then by Remark 1, if $c \in \mathbb{Z}_h \setminus \{0\}$ is odd, then $c \notin I_h(K_{n_1,\ldots,n_t})$. So, by Lemma 1 and by Case 1, $2\mathbb{Z}_h \subseteq I_h(K_{n_1,n_2,n_3})$ and $2\mathbb{Z}_h \subseteq I_h(K_{n_4,\ldots,n_t})$, respectively. So, $I_h(K_{n_1,\ldots,n_t}) = 2\mathbb{Z}_h$ and the proof is complete.

References

- S. Akbari, A. Daemi, O. Hatami Javanmard, A. Mehrabian, Zero-sum folows in regular graphs, Graphs and Combinatoris 26, 603-615 (2010).
- S. Akbari and S. Bahramian, On the null set of complete multipartite graphs, Electronic Notes in Discrete Mathematics, Vol. 45, 67-72, (2014).
- R. Chandrasekaran, M. Dawande, M. Baysan, On a labeling problem in graphs, Discrete Applied Mathematics, 159, 746-759, (2011).
- 4. A.G. Chetwynd, A.J.W. Hilton, Regular graphs of high degree are 1-factorizable, Proceedings of London Mathematical Society 50(2), 193-206, (1985).
- 5. B. Freyberg, Face-Magic Labelings of Some Grid-Related Graphs, Communications in Combinatorics and Optimization, Vol. 8, No. 3 , pp. 595-601, (2023)
- A. Farida, R.P. Indah, N.A. Sudibyo, Magic covering and edge magic labelling and its application, Journal of Physics Conference Series, 1657 (2020) 012051.
- M.J. Nikmehr, S. bahramian, Group magicness of certain planar Graphs, Transactions on Combinatorics, Vol. 3, 1-9, (2014).
- E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82, 41-53(2007).
- E. Salehi, On zero-sum magic graphs and their null set, Bulletin of Institute of Mathematics, Academia Sinca 3, 225-264(2008).
- 10. J. Sedlaced, On magic graphs, Math. Slov, 26(1976), 329-335.
- J. Sedlaced, Some properties of magic graphs, in Graphs, Hypergraph, and Bloc Syst. 1976, Proc. Symp. Comb. Anal, Zielona Gora (1976), 247-253.
- W.C. Shiue and Richard M. Low, Group magicness of complete n-partite graphs, JCMCC, 58(2006) 129-134.
- T.M. Wang, C.M. Lin, Magic sum spectra of group magic graphs, India-Taiwan Conference on Discrete Mathematics, NTU, November 9-12, 2009.
- 14. W.D. Wallis, Magic Gaphs, Birkhauser Boston, (2001).