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Prey-Predator System; Having Stable Periodic Orbit
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Abstract The study of differential equations is useful in to analyze the possi-
ble past or future with help of present information. In this paper, the behavior
of solutions has been analyzed around the equilibrium points for Gause model.
Finally, some results are worked out to exist the stable periodic orbit for men-
tioned predator-prey system.
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1 Introduction

The extensive work of Kolmogorov has been done on the existence and
uniqueness of limit cycles in a predator-prey system modeled by autonomous
differential equations. One of the popular version and well-known of this sys-
tems is Gause-type model which can be written as follows:

di_.’L‘J?— xz
{%—gu yp() "
dt

= y[—d + cp(x)].

*Corresponding author

M.H. Rahmani Doust

Department of Mathematics, University of Neyshabur, Neyshabur, Iran.
Tel.: +98-51-42629002

Fax: +98-51-42629003

E-mail: mh.rahmanidoust@neyshabur.ac.ir

S. Gholizade
Department of Mathematics, University of Ilam, Ilam, Iran.
E-mail: so.gholizade@yahoo.com

© 2016 Damghan University. All rights reserved. http://gadm.du.ac.ir/



22 M.H. Rahmani Doust, S. Gholizadet

Here, the parameters ¢ and d are positive real numbers, the function g(z)
is the individual growth rate of the prey species in the absence of the preda-
tors, p(z) represents the functional response of predators to the growth of prey.

Now, we review some basic concepts which are employed in this work.

Remark 1 Compact limit set is limit of a closed bounded set when mapped
through time.

Remark 2 A nonempty compact limit set of a C'planar dynamical system is
a closed orbit if the mentioned limit cycle contains no equilibrium point.

Remark 3 C" has a continuous first order derivative.

2 Main Results

Consider the Gause Model (1). Having payed attention to the this model, one
can see

, g(0) > 0;

and

dp(@) 0, p(0) = 0.

A prototype of g(x) is the logistic growth pattern, while p(z) is usually
assumed to be monotonically increasing. For the background on this model
and its generalizations, see Freedman [1], Kuang and Freedman [3], Huang
and Merrill [2], and the references therein.

Now, let us assume that:
dzd(tt) = f(Z) = [fl(zlv "'7271)7 "'7f’n(zla ,ZTL”

el ), POz =LEE .

Note that in the above model we have

1 =, 22 =Y

and

fi(z) =zg(z) —yp(x),  f2(2) = y[—d + ep(a)].

If we assume that

zeB(z9,e) ={z | |z — 20| < e},

then the Taylor series is as follows:
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F® (20)(z=20)" F®) (20)(z = 2p)"+?
)= 3 = = ) + 3, 2)
where
0% f1(z1,..,2n) 0% f1(z1,..,2n)
dzF T a2k
F®(z0) = : : : : (3)
akfn(zla<~7zn) Okfn(zl,..7zn)
dzF T 2k

Here, f(*)(zo) describes the k*" derivative of f(z).
Indeed, f™)(z) explains the Jacobian matrix which is evaluated at the
point zg.

Theorem 1 For system (1) the following statements hold:

i) It has three equilibrium points which are origin, (k,0) and (z*,y*).
ii) Origin and the point (k,0) are unstable points. The stability of point
(x*,y*) depends to the sign of the following term

B =g(z*) +a*g (z*) — y*p (z%),

if B < 0 then the said point is unstable and if B > 0 then the said point is
stable point.
iii) There is stable periodic orbit around the unstable fized point.

Proof i) To find the equilibrium points of system (1), we should set
a =0,
and so, we see that system (1) has three fixed points (0,0), (k,0), (z*, y*).
i1) First,we calculate the Jacobian matrix for origin, and so we have

F(0)=0,f(0)=0.
Eigenvalue A is solution of the following characteristic equation
[f D (z0) = ATl =0

which is evaluated at fixed point zg.
Here, I is identity matrix.

For calculating the eigenvalues of Jacobian matrix of system (1), we have

W) (5) = Q(SUO)JFIEOQI(?O)*Z/OP/(!EO) p(zo)
) = cyop (x0) Lroten)
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Thus,
IfP(z) = M| =0.
Hence,
g(x0) + wog (w0) = yop'(x0) = A plao) _0
| / B =0
cyop (o) d+ep(zo) — A

And so, the following polynomial equation of second order will be obtained:

(s00) + 05 () = g0 (20) = A=+ ) = 3) = ey (zo)pla) = 0
(4)
Therefore, by calculating its solution, we see that
the point zq is stable if
max(Re(A), fork=1,...,n) <O0.
And so, the mentioned point is unstable, if maxz(Re(Ag), k =1,...,n) > 0.
Now, let us consider the point (0,0), so that p(0) = 0.

Now, set it into the equation (1).
Note that

T = Yo = p(wo) = 0,
and
(9(0) = A)(=d = A) = 0.
Thus, the eigenvalue may be obtained as follows:

A1 = ¢g(0) > 0 which corresponds to z-axis,
A2 = —d < 0 which corresponds to y-axis.

As regarding the multiplication of the above eigenvalues is negative we see
that origin is unstable point for system (1).

Now, consider the point (k,0) so that g(k) = 0. After setting it into the
equation (1) and assuming

ro=k , wyo=gk)=0
we have:

(kg (k) — \)(=d + cp(k) = A) = 0

Hence, the related eigenvalues can be obtained as follows:

A = kg (k), —d + cp(k).
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Note that
—d+epz*)=0 , a*<k , px)>0.
Thus,
p(z") <p(k).
And so,

—d+cp(k) >0,
which implies that its first eigenvalue is negative by following value:
A =kg(k) <0

And also,
Ay = —d +cp(k) > 0.

Therefor, regarding that the multiplication of the last eigenvalues is nega-
tive the point (k,0) is unstable for system (1). Indeed, it is saddle point
Now, let us consider the point (z*,y*), then

O0<z*<k

and
y* > 0.

Setting it into the equation (1), one can see that

—d + cp(zo) = 0.
And so,

The following equation becomes:
(9(@*) +*g (&%) = y"p () = N)(=A) = ey"p (@")p(a”) = 0,
which is equivalent by the following equation:

N —[g(x") +2"g (@) = y*p (a")]A — ey"p (a")p(a”) = 0.

Now assume that
B=g(z")+a"g (z%) —y'p (z7),
and

C' = —cy*p (z")p(a).

Hence,
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First, we assume that the sign of B is positive.
If B > 0, then the first eigenvalue is as follows:

B —+vB2+4C <0
2 )
and for the second eigenvalue we have

_B+VB*HAC
=TT

A=
A2 0,
and so, in this case we have the point (z*,y*) is unstable for system (1).

For the second case consider the sign of B is negative.

If B <0, then
B—-+vB244
)\1:—+C<O
2
and
B+ VB2 +4C
)‘2:f<0'

Therefore, the point (z*,y*) is stable for system (1).

B>0 “

o x

Figl: Periodic Orbits

F(zt,t1) = 2 = (z1,11) F(z7,t1) = 2y = (z1,5)

F(z% 1) = 235 = (w2, 12) F(27 t2) = 25 = (72,92)

limz,j—>z, as k— o0 limz, — 27, as k— o0
=z <z

Therefore, one can see if B > 0, then the dynamical system has a stable
periodic orbit. Indeed, Stable periodic orbit exists around the unstable fixed
point.

Therefore, the proof of theorem is done.
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3 Conclusion

The equilibrium points and periodic orbits explain the equilibrium popu-
lations and oscillation populations respectively. The stability of equilibrium
point indeed is main concept in this area. In this work, we concentrated on
Gause model and found out some the results about equilibrium points and
their stability which are analyzed in presented theorem. In fact, by adding
some conditions on existing parameters, we are able to make stable the said
model.
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