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Abstract It is a common characteristic of many multiobjective optimization
problems that the efficient solution set can only be identified approximately.
This study addresses scalarization techniques for solving multiobjective opti-
mization problems. The min-max scalarization technique is considered, and ef-
forts are made to overcome its weaknesses in studying approximate efficient so-
lutions. To this end, two modifications of the min-max scalarization technique
are proposed. First, an alternative form of the min-max method is introduced.
Additionally, by using slack and surplus variables in the constraints and penal-
izing violations in the objective function, we obtain easy-to-check conditions
for approximate efficiency. The established theorems clarify the relationship
between ε-(weakly and properly) efficient solutions of the multiobjective opti-
mization problem and ϵ-optimal solutions of the proposed scalarized problems,
without requiring any assumptions of convexity.

Keywords Multiobjective programming · Scalarization · Min-max method ·
Approximate solutions.
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1 Introduction

Multiobjective optimization problem (MOP) is a part of vector optimization
that deals with mathematical programming involving more than one objective
function to be minimized over a set of decisions. In recent years, MOPs have
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emerged in various fields such as engineering, economics, management and
medicine (see, for example,[2–5,12,18,27]). There has been a growing interest
in engaging with approximately efficient solutions for MOPs. This interest can
be attributed to several important reasons. Firstly, numerical algorithms that
inherently generate approximate solutions have become increasingly common
in the field of optimization. Furthermore, under specific conditions such as
compactness or boundedness, the set of efficient solutions for an MOP may
be empty. However, the set of approximately efficient solutions often remains
nonempty, even when these conditions are not satisfied.

Kutateladze initially introduced the concept of approximate solutions in
MOP [14]. Later, Loridan expanded this concept [17]. Subsequently, White
introduced various types of approximate solutions within the framework of
MOPs [26]. Since then, many researchers have investigated the properties of
these approximate solutions and identified the necessary and sufficient condi-
tions for ε-(weakly and properly) efficient solutions in MOP. For more details,
readers are referred to [8–10,13,21,22].

In addition to theoretical studies, the practical importance of approximate
efficient solutions is emphasized by their use in different fields. A prominent
example is the research conducted by Shao and Ehrgott [23,24], who utilized
approximate efficient solutions to optimize radiation therapy processes. These
applications demonstrate how the investigation of approximate solutions in
MOP extends beyond theoretical concepts to solve real-life problems. A clas-
sical method used for solving MOPs is the scalarization technique. This ap-
proach involves converting an MOP into a single-objective problem, possibly
involving some parameters or additional constraints. Some of the well-known
scalarization techniques include the weighted sum method[19], the min-max
method [15], and the ε-constraint method[6].

An interesting research area in MOPs is exploring the relationship between
the (approximate) efficient solutions of an MOP and the (approximate) op-
timal solutions of the corresponding scalarized problem, which enhances our
understanding of the trade-offs in multiobjective decision-making. In the area
of approximate solutions, Liu obtained necessary and sufficient conditions for
ε-proper efficient solutions in convex MOP using the weighted sum method
[16]. In [10,11], Ghaznavi and Khorram achieved important results by utilizing
the elastic ε-constraint method. Our approach aims to determine conditions
that relate ε-(weakly and properly) efficient solutions of an MOP to ϵ-optimal
solutions of the scalarized problem. In the following, we will introduce initial
notions and definitions that will be used throughout the rest of the paper. To
compare two vectors in Rp, some common orders are as follows. Let y1, y2 ∈ Rp.
We say y1 ≦ y2 (y1 < y2) if and only if y1i ≤ y2i (y1i < y2i ) for all i = 1, . . . , p.
Moreover, we write y1 ≤ y2 if and only if y1 ≦ y2 and y1 ̸= y2. An MOP can
be expressed in the following way

min
x∈X

f(x) = (f1(x), . . . , fp(x)), (1)

where, X ⊆ Rn is the set of all feasible solutions or decisions and each fi, for
1 ⩽ i ⩽ p, is a real valued function on X. In this study, we will assume that



ARTIC
LE

IN
PRESS

An Extension of the Min-Max Method for Approximate Solutions of . . . 3

the functions fi are continuous and bounded above on X. Thus, max
k=1,...,p

fk(x)

is guaranteed to exist.

Definition 1 ([25]) Let ϵ ⩾ 0. Consider a real-valued function h defined on
X ⊆ Rn. A point x̂ ∈ X is referred to as an ϵ-optimal solution for the problem
min
x∈X

h(x), if h(x̂)− ϵ ⩽ h(x) for all x ∈ X.

Definition 2 ([21]) Consider ε ∈ Rp
≧ = {x ∈ Rp | x ≧ 0}. A point x̂ ∈ X for

the MOP (1) is called

(1) ε-Weakly efficient solution if there is no other x ∈ X such that f(x) <
f(x̂)− ε,

(2) ε-Efficient solution if there is no other x ∈ X such that f(x) ≤ f(x̂)− ε.

Definition 3 ([21]) A point x̂ ∈ X is called ε-properly efficient solution for
the MOP (1) if it is ε-efficient solution and there exists a positive constant M
such that for each 1 ⩽ i ⩽ p and for any x ∈ X satisfying fi(x) < fi(x̂) − εi,
there exists an index 1 ⩽ j ⩽ p such that fj(x) > fj(x̂)− εj and the following
inequality holds

fi(x̂)− fi(x)− εi
fj(x)− fj(x̂) + εj

⩽ M.

In a sequel to this paper, the sets of all ε-weakly efficient, ε-efficient, and
properly ε-efficient solutions will be referred to as XεwE , XεE , and XεpE , re-
spectively.

The remainder of this paper is organized as follows: In Section 2, an al-
ternative form of the min-max method is introduced, and the relationship
between the optimal solutions derived from the proposed alternative min-max
method and the original min-max method is presented through a theorem. In
Section 3, an extension of the proposed method is utilized to derive conditions
for ε-(weakly and properly) efficient solutions in the context of MOPs. Finally,
the paper concludes with some final remarks in the last section.

2 An alternative form of the min-max method

A conventional and widely used approach for addressing MOPs is scalarization.
This technique transforms an MOP into a single-objective problem, which may
include various parameters and additional constraints. One famous scalariza-
tion technique for tackling MOPs is the min-max method, which is defined as
follows

min
x∈X

max
k=1,...,p

fk(x). (2)
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In problem (2), if we assume that xn+1 = max
k=1,...,p

fk(x), it can be reformulated
as follows

min xn+1

s.t. fk(x) ⩽ xn+1, k = 1, . . . , p,
x ∈ X, xn+1 ∈ R.

(3)

It is noted that problem (3) can be considered a special case of the Pascoletti-
Serafini scalarization technique [7,20]. The next theorem shows that an opti-
mal objective value of problem (3) is a lower bound to an optimal objective
value of problem (2). To establish this, we prove the following lemma.

Lemma 1 If x̄ is a feasible solution for problem (2), then there exists an
x̄n+1 ∈ R such that the vector (x̄, x̄n+1) ∈ Rn+1 is a feasible solution for
problem (3).

Proof Let x̄ be a feasible solution for problem (2). Define x̄n+1 = max
k=1,...,p

fk(x̄).
Obviously, (x̄, x̄n+1) is a feasible solution for problem (3), which completes the
proof.

Theorem 1 Assume that the set of optimal solutions for problem (3) is not
empty and that (x̂, x̂n+1) is an optimal solution of problem (3). Let x̄ be an
optimal solution of problem (2). Then, the following statements hold.

(1) x̂n+1 ⩽ max
k=1,...,p

fk(x̄),
(2) If x̂ is a feasible solution for problem (2), then x̂n+1 = max

k=1,...,p
fk(x̄).

Proof (1) Let x̄ be a feasible solution for problem (2). Define

x̄n+1 = max
k=1,...,p

fk(x̄).

By Lemma 1, (x̄, x̄n+1) is a feasible solution of problem (3). Now, by assump-
tion, (x̂, x̂n+1) is an optimal solution of problem (3), it follows that

x̂n+1 ⩽ max
k=1,...,p

fk(x̄). (4)

(2) To prove the second part of the theorem, note that since x̂ is a feasible
solution for problem (2), it implies that

max
k=1,...,p

fk(x̄) ⩽ max
k=1,...,p

fk(x̂) = x̂n+1. (5)

Combining (4) with (5), we infer that

x̂n+1 ⩽ max
k=1,...,p

fk(x̄) ⩽ max
k=1,...,p

fk(x̂) = x̂n+1.

In continuation, we aim to characterize approximate efficient solutions of
MOP (1) through problem (3). The following theorem illustrates the con-
nection between ε-(weakly) efficient solutions of MOP (1) and the ϵ-optimal
solutions of problem (3).
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Theorem 2 Let ϵ ⩾ 0, and ε ≧ 0. Then, for problem (3) we have the following
results.

(1) If (x̂, x̂n+1) is an ϵ-optimal solution of problem (3) with ϵ ⩽ min
i=1,...,p

εi, then
x̂ ∈ XεwE .

(2) If (x̂, x̂n+1) is the unique ϵ-optimal solution of problem (3), then x̂ ∈ XεE .

Proof (1) Suppose x̂ is not an ε-weakly efficient solution of MOP (1). Then,
there exists x ∈ X such that fi(x) < fi(x̂)− εi for all 1 ⩽ i ⩽ p. Therefore, for
all i, we can find vi > 0 such that fi(x)+ vi = fi(x̂)− εi. Define δ = min

i=1,...,p
vi.

Thus,

fi(x) + δ ⩽ fi(x̂)− εi ⩽ x̂n+1 − ϵ,

for all 1 ⩽ i ⩽ p. Therefore, (x, x̂n+1 − δ − ϵ) is a feasible solution of the
problem (3) such that

x̂n+1 − δ − ϵ < x̂n+1 − ϵ.

This contradicts the ϵ-optimality of (x̂, x̂n+1).
(2) For the second part, let us assume there exists an x ∈ X such that

fi(x) ⩽ fi(x̂)− εi ⩽ x̂n+1,

for all 1 ⩽ i ⩽ p and some j ∈ {1, . . . , p}, we have

fj(x) < fj(x̂)− εj ⩽ x̂n+1.

Therefore, (x, x̂n+1) is a feasible solution to problem (3) with the same ob-
jective function value as (x̂, x̂n+1). the uniqueness of the ϵ-optimal solution
demonstrates that x = x̂.

In the next section, we will formulate a new version of the scalarization problem
(3) that aims to characterize ε-weakly, ε-properly, and ε-efficient solutions of
MOP (1).

3 ε-(weakly and properly) efficient solutions

In this section, using slack and surplus variables, an extension of the scalar-
ization problem (3) is proposed as follows

min xn+1 −
p∑

i=1

µis
+
i +

p∑
i=1

γis
−
i

s.t. fi(x) + s+i − s−i ⩽ xn+1, i = 1, . . . , p,

x ∈ X, xn+1 ∈ R, s+, s− ≧ 0,

(6)

where µi and γi for 1 ⩽ i ⩽ p, are non-negative weights. According to the next
lemma, we need to assume that γ − µ ≧ 0.
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Lemma 2 Suppose there exists 1 ⩽ i ⩽ p such that γi−µi < 0. Then problem
(6) is unbounded, otherwise there exists a partition I ∪ Ī of {1, . . . , p} such
that s+i = 0 for all i ∈ I, and s−i = 0 for all i ∈ Ī.

Proof The proof follows a similar approach to the proof of Lemma 5.1 in [6].

The following theorem establishes sufficient conditions for the ε-weakly effi-
cient solution of MOP (1).

Theorem 3 Assume that ϵ ⩾ 0, and ε ≧ 0. Then for the scalarized model (6),
we have the following statements

(1) If (x̂, x̂n+1, ŝ
+, ŝ−) is an ϵ-optimal solution of problem (6) with

ϵ ⩽ min
i=1,...,p

εi, then x̂ is an ε-weakly efficient solution of MOP (1).
(2) If (x̂, x̂n+1, ŝ

+, ŝ−) is an ϵ-optimal solution of problem (6) with

ϵ ⩽
p∑

i=1

µiεi and µ ≥ 0, then x̂ is an ε-weakly efficient solution of MOP

(1).
(3) If (x̂, x̂n+1, ŝ

+, ŝ−) is an ϵ-optimal solution of problem (6) with

ϵ ⩽
p∑

i=1

γiεi, ε ≦ ŝ− and γ ≥ 0, then x̂ is an ε-weakly efficient solution of

MOP (1).

Proof (1) The proof of this part follows the first part of Theorem 2.
(2) If x̂ is not an ε-weakly efficient solution of MOP (1), then there exists an
x ∈ X such that fi(x) + vi < fi(x̂)− εi, where vi > 0 for all 1 ⩽ i ⩽ p. Thus,
we have

fi(x) + ŝ+i − ŝ−i + vi + εi< fi(x̂) + ŝ+i − ŝ−i ⩽ x̂n+1,

for all i. Setting s+i = ŝ+i +vi+εi for all 1 ⩽ i ⩽ p. Therefore, (x, x̂n+1, s
+, ŝ−)

is a feasible point of problem (6) such that

x̂n+1 −
p∑

i=1

µis
+
i +

p∑
i=1

γiŝ
−
i = x̂n+1 −

p∑
i=1

µiŝ
+
i +

p∑
i=1

γiŝ
−
i −

p∑
i=1

µivi −
p∑

i=1

µiεi

< x̂n+1 −
p∑

i=1

µiŝ
+
i +

p∑
i=1

γiŝ
−
i − ϵ.

This contradicts the fact that (x̂, x̂n+1, ŝ
+, ŝ−) is an ϵ-optimal solution of prob-

lem (6). The proof for part (3) follows an analogous approach to that of part
(2).

The following theorem provides sufficient conditions for the ε-efficient solution
of MOP (1).

Theorem 4 Suppose that ϵ ⩾ 0, and ε ≧ 0. Then, the subsequent statements
are valid.
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(1) If (x̂, x̂n+1, ŝ
+, ŝ−) is the unique ϵ-optimal solution of problem (6), then x̂

is an ε-efficient solution of MOP (1).
(2) If (x̂, x̂n+1, ŝ

+, ŝ−) is an ϵ-optimal solution of problem (6) with µ > 0 and

ϵ ⩽
p∑

i=1

µiεi, then x̂ is an ε-efficient solution of MOP (1).

(3) If (x̂, x̂n+1, ŝ
+, ŝ−) is an ϵ-optimal solution of problem (6) with

γ > 0, ε < ŝ− and ϵ ⩽
p∑

i=1

γiεi, then x̂ is an ε-efficient solution of MOP

(1).

Proof (1) The proof is similar in spirit to the second part of Theorem 2.
(2) Assume that x̂ is not an ε-efficient solution of MOP (1), then there exists
an x ∈ X such that fi(x) ⩽ fi(x̂)− εi for all 1 ⩽ i ⩽ p, and fj(x) < fj(x̂)− εj
for some j ∈ {1, . . . , p}. Consequently,

fi(x) + ŝ+i − ŝ−i ⩽ fi(x̂) + ŝ+i − ŝ−i − εi ⩽ x̂n+1, 1 ⩽ i ⩽ p,

and

fj(x) + ŝ+j − ŝ−j < fj(x̂) + ŝ+j − ŝ−j − εj ⩽ x̂n+1,

for some j. Choosing vj > 0 such that vj ⩽ fj(x̂)− fj(x)− εj gives
fj(x) + ŝ+j − ŝ−j + vj + εj ⩽ x̂n+1. Putting

s+i =

{
ŝ+i + εi, i ̸= j,

ŝ+i + vi + εi, i = j.

Thus, (x, x̂n+1, s
+, ŝ−) is a feasible point of problem (6). Furthermore,

x̂n+1 −
p∑

i=1

µis
+
i +

p∑
i=1

γiŝ
−
i = x̂n+1 −

p∑
i=1

µiŝ
+
i −

p∑
i=1

µiεi − µjvj +

p∑
i=1

γiŝ
−
i

< x̂n+1 −
p∑

i=1

µiŝ
+
i +

p∑
i=1

γiŝ
−
i − ϵ.

This leads to a contradiction with the ϵ-optimality of (x̂, x̂n+1, ŝ
+, ŝ−).

(3) By selecting vj > 0 such that vj ⩽ min{fj(x̂) − fj(x) − εj , ŝj − εj}, and
defining the new variables

s−i =

{
ŝ−i − εi, i ̸= j,

ŝi − vi − εi, i = j,

we conclude that (x, x̂n+1, ŝ
+, s−) is a feasible point of problem (6). Moreover,

x̂n+1 −
p∑

i=1

µiŝ
+
i +

p∑
i=1

γis
−
i < x̂n+1 −

p∑
i=1

µiŝ
+
i +

p∑
i=1

γiŝ
−
i − ϵ.

This contradicts the ϵ-optimality of (x̂, x̂n+1, ŝ
+, ŝ−), leading to a contradic-

tion.
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Our later theorem provides more sufficient conditions for the ε-efficient
solution of MOP (1).

Theorem 5 Assume that ϵ ⩾ 0, and ε ≧ 0. If (x̂, x̂n+1, ŝ
+, ŝ−) is an ϵ-optimal

solution of problem (6) and also

(1) ϵ <

p∑
i=1

µiεi, then x̂ is an ε-efficient solution of MOP (1).

(2) ϵ <

p∑
i=1

γiεi and ε < ŝ−, then x̂ is an ε-efficient solution of MOP (1).

Proof The proof follows a similar structure to the proof of Theorem 4.

In the following, under the assumptions cited in Theorem 4 (parts (2) and
(3)), we prove that x̂ is an ε-properly efficient solution of the MOP (1).

Theorem 6 Let ϵ ⩾ 0, and ε ≧ 0. If (x̂, x̂n+1, ŝ
+, ŝ−) is an ϵ-optimal solution

of problem (6) such that

(1) µ > 0 and ϵ ⩽
p∑

i=1

µiεi, then x̂ is an ε-properly efficient solution of MOP

(1).

(2) γ > 0, ε ≦ ŝ− and ϵ ⩽
p∑

i=1

γiεi, then x̂ is an ε-properly efficient solution

of MOP (1).

Proof We provide the proof of the second part, proof of the first part is similar
and will be omitted.
(2) Based on the second part of Theorem 4, x̂ is an ε-efficient solution of
the MOP (1). Assume that x̂ /∈ XεpE . Thus, for all M > 0 there exists
l ∈ {1, . . . , p} and x ∈ X with fl(x) < fl(x̂)− εl such that

fl(x̂)− fl(x)− εl
fj(x)− fj(x̂) + εj

> M, (7)

for all j with fj(x) > fj(x̂)− εj . For the index l, we have

fl(x) + v = fl(x̂)− εl, (8)

where v > 0. In this way,

fl(x) + ŝ+l + v − ŝ− + εl= fl(x̂) + ŝ+l − ŝ−l ⩽ x̂n+1.

Define J = {1 ⩽ j ⩽ p | fj(x) > fj(x̂) − εj}, and let M > 0 such that∑
i∈J

γi < µlM . From (7) and (8) we see that for all j ∈ J ,

fj(x) < fj(x̂) +
v

M
− εj .
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Since (x, x̂n+1, s
+, s−) is a feasible point of problem (6), we acquire

fj(x) + ŝ+j − ŝ−j < fj(x̂) + ŝ+j − ŝ−j +
v

M
− εj

⩽ x̂n+1 +
v

M
− εj ,

for all j ∈ J . Therefore,

fj(x) + ŝ+j − ŝ−j + εj −
v

M
⩽ x̂n+1, ∀j ∈ J.

On the other hand, if i /∈ J ∪ {l}, then fi(x) ⩽ fi(x̂) − εi. From this, by the
feasibility of the point (x̂, x̂n+1, ŝ

+, ŝ−), we infer that

fi(x) + ŝ+i − ŝ−i + εi ⩽ fi(x̂) + ŝ+i − ŝ−i ⩽ x̂n+1, ∀i /∈ J ∪ {l}.

Define

s+i =

{
ŝ+i + v, i = l,

ŝ+i , i ̸= l,

and

s−i =

{
ŝ−i − εi, i /∈ J,

ŝ−i − εi +
v
M , i ∈ J.

Thus, (x, x̂n+1, s
+, s−) is a feasible point of problem (6) and also

x̂n+1 −
p∑

i=1

µis
+
i +

p∑
i=1

γis
−
i

= x̂n+1 −
p∑

i=1

µiŝ
+
i +

p∑
i=1

γiŝ
−
i +

∑
i∈J

γi
v

M
− µlv −

p∑
i=1

γiεi

< x̂n+1 −
p∑

i=1

µiŝ
+
i +

p∑
i=1

γiŝi
− − ϵ.

The last inequality holds based on the assumptions
∑
i∈J

γi
v

M
− µlv < 0 and

ϵ ⩽
p∑

i=1

γiεi. This is contrary to the ϵ-optimality of (x̂, x̂n+1, ŝ
+, ŝ−).

Under the hypotheses of Theorem 5, we assert that x̂ is an ε-properly efficient
solution of the MOP (1).

Theorem 7 Let ϵ ⩾ 0, and ε ≧ 0. Assume that (x̂, x̂n+1, ŝ
+, ŝ−) is an ϵ-

optimal solution of problem (6). If

(1) ϵ <

p∑
i=1

µiεi, then x̂ is an ε-properly efficient solution of the MOP (1).
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(2) ϵ <

p∑
i=1

γiεi and ε ≦ ŝ−, then x̂ is an ε-properly efficient solution of the

MOP (1).

Proof The proof is similar to that of Theorem 6.

Table 1 Summary of results for an ϵ-optimal solution of problem (6).

Condition on parameters Implication for x̂ Reference
ϵ ⩽ min

i=1,...,p
εi x̂ ∈ XεwE Theorem 3(1)

ϵ ⩽
p∑

i=1

µiεi, µ ≥ 0 x̂ ∈ XεwE Theorem 3(2)

ϵ ⩽
p∑

i=1

γiεi, ε ≦ ŝ−, γ ≥ 0 x̂ ∈ XεwE Theorem 3(3)

Unique ϵ-optimal solution x̂ ∈ XεE Theorem 4(1)

ϵ ⩽
p∑

i=1

µiεi, µ > 0 x̂ ∈ XεE Theorem 4(2)

ϵ ⩽
p∑

i=1

γiεi, ε < ŝ−, γ > 0 x̂ ∈ XεE Theorem 4 (3)

0 < ϵ <

p∑
i=1

µiεi x̂ ∈ XεE Theorem 5 (1)

0 < ϵ <

p∑
i=1

γiεi, ε ≦ ŝ− x̂ ∈ XεE Theorem 5(2)

ϵ ⩽
p∑

i=1

µiεi, µ > 0 x̂ ∈ XεpE Theorem 6(1)

ϵ ⩽
p∑

i=1

γiεi, ε < ŝ−, γ > 0 x̂ ∈ XεpE Theorem 6(2)

0 < ϵ <

p∑
i=1

µiεi x̂ ∈ XεpE Theorem 7(1)

0 < ϵ <

p∑
i=1

γiεi, ε ≦ ŝ− x̂ ∈ XεpE Theorem 7(2)

4 Conclusion and future works

In this research, we considered a novel variant of the min-max method to find
approximate efficient solutions in the context of MOPs. Specifically, we inves-
tigate the relationship between the optimal solution of the min-max method
and that of the novel variant. We then introduced an extension of this method
that incorporates flexible constraints, enabling us to study conditions that
illustrate a deep relationship between ε-(weakly and properly) efficient solu-
tions within the MOP and ϵ-optimal solutions in the extensive scalarization
problem. In Table 1, we summarize some results obtained from the previous
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sections for the proposed model. As a future research plan, we intend to focus
on investigating ε-(weakly and properly) efficient solutions using Pascoletti–
Serafini scalarization technique.
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