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Abstract

It is a common characteristic of many multiobjective optimization problems that the efficient solution set can only be identified

approximately. This study addresses scalarization techniques for solving multiobjective optimization problems. The min-max

scalarization technique is considered, and efforts are made to overcome its weaknesses in studying approximate efficient solutions.

To this end, two modifications of the min-max scalarization technique are proposed. First, an alternative form of the min-max

method is introduced. Additionally, by using slack and surplus variables in the constraints and penalizing violations in the objective

function, we obtain easy-to-check conditions for approximate efficiency. The established theorems clarify the relationship between

ε-(weakly and properly) efficient solutions of the multiobjective optimization problem and ε-optimal solutions of the proposed

scalarized problems, without requiring any assumptions of convexity.
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1 Introduction
Multiobjective optimization problem (MOP) is a part of vector optimization that deals with mathematical programming involving more than

one objective function to be minimized over a set of decisions. In recent years, MOPs have emerged in various fields such as engineering,

economics, management and medicine (see, for example, [2–5,12,18,27]). There has been a growing interest in engaging with approximately

efficient solutions for MOPs. This interest can be attributed to several important reasons. Firstly, numerical algorithms that inherently

generate approximate solutions have become increasingly common in the field of optimization. Furthermore, under specific conditions

such as compactness or boundedness, the set of efficient solutions for an MOP may be empty. However, the set of approximately efficient

solutions often remains nonempty, even when these conditions are not satisfied.

Kutateladze initially introduced the concept of approximate solutions in MOP [14]. Later, Loridan expanded this concept [17].

Subsequently, White introduced various types of approximate solutions within the framework of MOPs [26]. Since then, many researchers

have investigated the properties of these approximate solutions and identified the necessary and sufficient conditions for ε-(weakly and

properly) efficient solutions in MOP. For more details, readers are referred to [8–10, 13, 21, 22].
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In addition to theoretical studies, the practical importance of approximate efficient solutions is emphasized by their use in different

fields. A prominent example is the research conducted by Shao and Ehrgott [23, 24], who utilized approximate efficient solutions to

optimize radiation therapy processes. These applications demonstrate how the investigation of approximate solutions in MOP extends

beyond theoretical concepts to solve real-life problems. A classical method used for solving MOPs is the scalarization technique. This

approach involves converting an MOP into a single-objective problem, possibly involving some parameters or additional constraints. Some

of the well-known scalarization techniques include the weighted sum method [19], the min-max method [15], and the ε-constraint method

[6].

An interesting research area in MOPs is exploring the relationship between the (approximate) efficient solutions of an MOP and

the (approximate) optimal solutions of the corresponding scalarized problem, which enhances our understanding of the trade-offs in

multiobjective decision-making. In the area of approximate solutions, Liu obtained necessary and sufficient conditions for ε-proper efficient

solutions in convex MOP using the weighted sum method [16]. In [10,11], Ghaznavi and Khorram achieved important results by utilizing the

elastic ε-constraint method. Our approach aims to determine conditions that relate ε-(weakly and properly) efficient solutions of an MOP to

ε-optimal solutions of the scalarized problem. In the following, we will introduce initial notions and definitions that will be used throughout

the rest of the paper. To compare two vectors in Rp, some common orders are as follows. Let y1,y2 ∈ Rp. We say y1 ≦ y2 (y1 < y2) if and

only if y1
i ≤ y2

i (y1
i < y2

i ) for all i = 1, . . . , p. Moreover, we write y1 ≤ y2 if and only if y1 ≦ y2 and y1 ̸= y2. An MOP can be expressed in

the following way

min
x∈X

f (x) = ( f1(x), . . . , fp(x)), (1)

where, X ⊆Rn is the set of all feasible solutions or decisions and each fi, for 1 ⩽ i ⩽ p, is a real valued function on X . In this study, we will

assume that the functions fi are continuous and bounded above on X . Thus, max
k=1,...,p

fk(x) is guaranteed to exist.

Definition 1. ( [25]) Let ε ⩾ 0. Consider a real-valued function h defined on X ⊆ Rn. A point x̂ ∈ X is referred to as an ε-optimal solution

for the problem min
x∈X

h(x), if h(x̂)− ε ⩽ h(x) for all x ∈ X.

Definition 2. ( [21]) Consider ε ∈ Rp
≧ = {x ∈ Rp | x ≧ 0}. A point x̂ ∈ X for the MOP (1) is called

(1) ε-Weakly efficient solution if there is no other x ∈ X such that f (x)< f (x̂)− ε ,

(2) ε-Efficient solution if there is no other x ∈ X such that f (x)≤ f (x̂)− ε .

Definition 3. ( [21]) A point x̂ ∈ X is called ε-properly efficient solution for the MOP (1) if it is ε-efficient solution and there exists a

positive constant M such that for each 1 ⩽ i ⩽ p and for any x ∈ X satisfying fi(x) < fi(x̂)− εi, there exists an index 1 ⩽ j ⩽ p such that

f j(x)> f j(x̂)− ε j and the following inequality holds

fi(x̂)− fi(x)− εi

f j(x)− f j(x̂)+ ε j
⩽ M.

In a sequel to this paper, the sets of all ε-weakly efficient, ε-efficient, and properly ε-efficient solutions will be referred to as XεwE ,XεE ,

and Xε pE , respectively.

The remainder of this paper is organized as follows: In Section 2, an alternative form of the min-max method is introduced, and the

relationship between the optimal solutions derived from the proposed alternative min-max method and the original min-max method is

presented through a theorem. In Section 3, an extension of the proposed method is utilized to derive conditions for ε-(weakly and properly)

efficient solutions in the context of MOPs. Finally, the paper concludes with some final remarks in the last section.

2 An Alternative Form of the Min-Max Method
A conventional and widely used approach for addressing MOPs is scalarization. This technique transforms an MOP into a single-objective

problem, which may include various parameters and additional constraints. One famous scalarization technique for tackling MOPs is the

min-max method, which is defined as follows
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min
x∈X

max
k=1,...,p

fk(x). (2)

In problem (2), if we assume that xn+1 = max
k=1,...,p

fk(x), it can be reformulated as follows

min xn+1

s.t. fk(x)⩽ xn+1, k = 1, . . . , p,

x ∈ X , xn+1 ∈ R.
(3)

It is noted that problem (3) can be considered a special case of the Pascoletti-Serafini scalarization technique [7, 20]. The next theorem

shows that an optimal objective value of problem (3) is a lower bound to an optimal objective value of problem (2). To establish this, we

prove the following lemma.

Lemma 1. If x̄ is a feasible solution for problem (2), then there exists an x̄n+1 ∈ R such that the vector (x̄, x̄n+1) ∈ Rn+1 is a feasible

solution for problem (3).

Proof. Let x̄ be a feasible solution for problem (2). Define x̄n+1 = max
k=1,...,p

fk(x̄). Obviously, (x̄, x̄n+1) is a feasible solution for problem (3),

which completes the proof.

Theorem 1. Assume that the set of optimal solutions for problem (3) is not empty and that (x̂, x̂n+1) is an optimal solution of problem (3).

Let x̄ be an optimal solution of problem (2). Then, the following statements hold.

(1) x̂n+1 ⩽ max
k=1,...,p

fk(x̄),

(2) If x̂ is a feasible solution for problem (2), then x̂n+1 = max
k=1,...,p

fk(x̄).

Proof. (1) Let x̄ be a feasible solution for problem (2). Define

x̄n+1 = max
k=1,...,p

fk(x̄).

By Lemma 1, (x̄, x̄n+1) is a feasible solution of problem (3). Now, by assumption, (x̂, x̂n+1) is an optimal solution of problem (3), it follows

that

x̂n+1 ⩽ max
k=1,...,p

fk(x̄). (4)

(2) To prove the second part of the theorem, note that since x̂ is a feasible solution for problem (2), it implies that

max
k=1,...,p

fk(x̄)⩽ max
k=1,...,p

fk(x̂) = x̂n+1. (5)

Combining (4) with (5), we infer that

x̂n+1 ⩽ max
k=1,...,p

fk(x̄)⩽ max
k=1,...,p

fk(x̂) = x̂n+1.

In continuation, we aim to characterize approximate efficient solutions of MOP (1) through problem (3). The following theorem

illustrates the connection between ε-(weakly) efficient solutions of MOP (1) and the ε-optimal solutions of problem (3).

Theorem 2. Let ε ⩾ 0, and ε ≧ 0. Then, for problem (3) we have the following results.

(1) If (x̂, x̂n+1) is an ε-optimal solution of problem (3) with ε ⩽ min
i=1,...,p

εi, then x̂ ∈ XεwE .

(2) If (x̂, x̂n+1) is the unique ε-optimal solution of problem (3), then x̂ ∈ XεE .
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Proof. (1) Suppose x̂ is not an ε-weakly efficient solution of MOP (1). Then, there exists x ∈ X such that fi(x)< fi(x̂)−εi for all 1 ⩽ i ⩽ p.

Therefore, for all i, we can find vi > 0 such that fi(x)+ vi = fi(x̂)− εi. Define δ = min
i=1,...,p

vi. Thus,

fi(x)+δ ⩽ fi(x̂)− εi ⩽ x̂n+1 − ε,

for all 1 ⩽ i ⩽ p. Therefore, (x, x̂n+1 −δ − ε) is a feasible solution of the problem (3) such that

x̂n+1 −δ − ε < x̂n+1 − ε.

This contradicts the ε-optimality of (x̂, x̂n+1).

(2) For the second part, let us assume there exists an x ∈ X such that

fi(x)⩽ fi(x̂)− εi ⩽ x̂n+1,

for all 1 ⩽ i ⩽ p and some j ∈ {1, . . . , p}, we have

f j(x)< f j(x̂)− ε j ⩽ x̂n+1.

Therefore, (x, x̂n+1) is a feasible solution to problem (3) with the same objective function value as (x̂, x̂n+1). the uniqueness of the ε-optimal

solution demonstrates that x = x̂.

In the next section, we will formulate a new version of the scalarization problem (3) that aims to characterize ε-weakly, ε-properly, and

ε-efficient solutions of MOP (1).

3 ε-(Weakly and Properly) Efficient Solutions
In this section, using slack and surplus variables, an extension of the scalarization problem (3) is proposed as follows

min xn+1 −
p

∑
i=1

µis+i +
p

∑
i=1

γis−i

s.t. fi(x)+ s+i − s−i ⩽ xn+1, i = 1, . . . , p,

x ∈ X , xn+1 ∈ R, s+, s− ≧ 0,

(6)

where µi and γi for 1 ⩽ i ⩽ p, are non-negative weights. According to the next lemma, we need to assume that γ −µ ≧ 0.

Lemma 2. Suppose there exists 1 ⩽ i ⩽ p such that γi −µi < 0. Then problem (6) is unbounded, otherwise there exists a partition I ∪ Ī of

{1, . . . , p} such that s+i = 0 for all i ∈ I, and s−i = 0 for all i ∈ Ī.

Proof. The proof follows a similar approach to the proof of Lemma 5.1 in [6].

The following theorem establishes sufficient conditions for the ε-weakly efficient solution of MOP (1).

Theorem 3. Assume that ε ⩾ 0, and ε ≧ 0. Then for the scalarized model (6), we have the following statements

(1) If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) with

ε ⩽ min
i=1,...,p

εi, then x̂ is an ε-weakly efficient solution of MOP (1).

(2) If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) with

ε ⩽
p

∑
i=1

µiεi and µ ≥ 0, then x̂ is an ε-weakly efficient solution of MOP (1).

(3) If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) with

ε ⩽
p

∑
i=1

γiεi, ε ≦ ŝ− and γ ≥ 0, then x̂ is an ε-weakly efficient solution of MOP (1).
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Proof. (1) The proof of this part follows the first part of Theorem 2.

(2) If x̂ is not an ε-weakly efficient solution of MOP (1), then there exists an x ∈ X such that fi(x)+ vi < fi(x̂)− εi, where vi > 0 for all

1 ⩽ i ⩽ p. Thus, we have

fi(x)+ ŝ+i − ŝ−i + vi + εi< fi(x̂)+ ŝ+i − ŝ−i ⩽ x̂n+1,

for all i. Setting s+i = ŝ+i + vi + εi for all 1 ⩽ i ⩽ p. Therefore, (x, x̂n+1,s+, ŝ−) is a feasible point of problem (6) such that

x̂n+1 −
p

∑
i=1

µis+i +
p

∑
i=1

γiŝ−i = x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γiŝ−i −
p

∑
i=1

µivi −
p

∑
i=1

µiεi

< x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γiŝ−i − ε.

This contradicts the fact that (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6). The proof for part (3) follows an analogous approach

to that of part (2).

The following theorem provides sufficient conditions for the ε-efficient solution of MOP (1).

Theorem 4. Suppose that ε ⩾ 0, and ε ≧ 0. Then, the subsequent statements are valid.

(1) If (x̂, x̂n+1, ŝ+, ŝ−) is the unique ε-optimal solution of problem (6), then x̂ is an ε-efficient solution of MOP (1).

(2) If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) with µ > 0 and ε ⩽
p

∑
i=1

µiεi, then x̂ is an ε-efficient solution of MOP (1).

(3) If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) with

γ > 0, ε < ŝ− and ε ⩽
p

∑
i=1

γiεi, then x̂ is an ε-efficient solution of MOP (1).

Proof. (1) The proof is similar in spirit to the second part of Theorem 2.

(2) Assume that x̂ is not an ε-efficient solution of MOP (1), then there exists an x ∈ X such that fi(x) ⩽ fi(x̂)− εi for all 1 ⩽ i ⩽ p, and

f j(x)< f j(x̂)− ε j for some j ∈ {1, . . . , p}. Consequently,

fi(x)+ ŝ+i − ŝ−i ⩽ fi(x̂)+ ŝ+i − ŝ−i − εi ⩽ x̂n+1, 1 ⩽ i ⩽ p,

and

f j(x)+ ŝ+j − ŝ−j< f j(x̂)+ ŝ+j − ŝ−j − ε j ⩽ x̂n+1,

for some j. Choosing v j > 0 such that v j ⩽ f j(x̂)− f j(x)− ε j gives

f j(x)+ ŝ+j − ŝ−j + v j + ε j ⩽ x̂n+1. Putting

s+i =

ŝ+i + εi, i ̸= j,

ŝ+i + vi + εi, i = j.

Thus, (x, x̂n+1,s+, ŝ−) is a feasible point of problem (6). Furthermore,

x̂n+1 −
p

∑
i=1

µis+i +
p

∑
i=1

γiŝ−i = x̂n+1 −
p

∑
i=1

µiŝ+i −
p

∑
i=1

µiεi −µ jv j +
p

∑
i=1

γiŝ−i

< x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γiŝ−i − ε.

This leads to a contradiction with the ε-optimality of (x̂, x̂n+1, ŝ+, ŝ−).

(3) By selecting v j > 0 such that v j ⩽ min{ f j(x̂)− f j(x)− ε j, ŝ j − ε j}, and defining the new variables

s−i =

ŝ−i − εi, i ̸= j,

ŝi − vi − εi, i = j,
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we conclude that (x, x̂n+1, ŝ+,s−) is a feasible point of problem (6). Moreover,

x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γis−i < x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γiŝ−i − ε.

This contradicts the ε-optimality of (x̂, x̂n+1, ŝ+, ŝ−), leading to a contradiction.

Our later theorem provides more sufficient conditions for the ε-efficient solution of MOP (1).

Theorem 5. Assume that ε ⩾ 0, and ε ≧ 0. If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) and also

(1) ε <
p

∑
i=1

µiεi, then x̂ is an ε-efficient solution of MOP (1).

(2) ε <
p

∑
i=1

γiεi and ε < ŝ−, then x̂ is an ε-efficient solution of MOP (1).

Proof. The proof follows a similar structure to the proof of Theorem 4.

In the following, under the assumptions cited in Theorem 4 (parts (2) and (3)), we prove that x̂ is an ε-properly efficient solution of the

MOP (1).

Theorem 6. Let ε ⩾ 0, and ε ≧ 0. If (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6) such that

(1) µ > 0 and ε ⩽
p

∑
i=1

µiεi, then x̂ is an ε-properly efficient solution of MOP (1).

(2) γ > 0, ε ≦ ŝ− and ε ⩽
p

∑
i=1

γiεi, then x̂ is an ε-properly efficient solution of MOP (1).

Proof. We provide the proof of the second part, proof of the first part is similar and will be omitted.

(2) Based on the second part of Theorem 4, x̂ is an ε-efficient solution of the MOP (1). Assume that x̂ /∈ Xε pE . Thus, for all M > 0 there

exists l ∈ {1, . . . , p} and x ∈ X with fl(x)< fl(x̂)− εl such that

fl(x̂)− fl(x)− εl

f j(x)− f j(x̂)+ ε j
> M, (7)

for all j with f j(x)> f j(x̂)− ε j. For the index l, we have

fl(x)+ v = fl(x̂)− εl , (8)

where v > 0. In this way,

fl(x)+ ŝ+l + v− ŝ−+ εl= fl(x̂)+ ŝ+l − ŝ−l ⩽ x̂n+1.

Define J = {1 ⩽ j ⩽ p | f j(x)> f j(x̂)− ε j}, and let M > 0 such that ∑
i∈J

γi < µlM. From (7) and (8) we see that for all j ∈ J,

f j(x)< f j(x̂)+
v
M

− ε j.

Since (x, x̂n+1,s+,s−) is a feasible point of problem (6), we acquire

f j(x)+ ŝ+j − ŝ−j < f j(x̂)+ ŝ+j − ŝ−j +
v
M

− ε j

⩽ x̂n+1 +
v
M

− ε j,

for all j ∈ J. Therefore,

f j(x)+ ŝ+j − ŝ−j + ε j −
v
M

⩽ x̂n+1, ∀ j ∈ J.
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On the other hand, if i /∈ J∪{l}, then fi(x)⩽ fi(x̂)− εi. From this, by the feasibility of the point (x̂, x̂n+1, ŝ+, ŝ−), we infer that

fi(x)+ ŝ+i − ŝ−i + εi ⩽ fi(x̂)+ ŝ+i − ŝ−i ⩽ x̂n+1, ∀i /∈ J∪{l}.

Define

s+i =

ŝ+i + v, i = l,

ŝ+i , i ̸= l,

and

s−i =

ŝ−i − εi, i /∈ J,

ŝ−i − εi +
v
M , i ∈ J.

Thus, (x, x̂n+1,s+,s−) is a feasible point of problem (6) and also

x̂n+1 −
p

∑
i=1

µis+i +
p

∑
i=1

γis−i = x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γiŝ−i +∑
i∈J

γi
v
M

−µlv−
p

∑
i=1

γiεi

< x̂n+1 −
p

∑
i=1

µiŝ+i +
p

∑
i=1

γiŝi
−− ε.

The last inequality holds based on the assumptions ∑
i∈J

γi
v
M

−µlv < 0 and ε ⩽
p

∑
i=1

γiεi. This is contrary to the ε-optimality of (x̂, x̂n+1, ŝ+, ŝ−).

Under the hypotheses of Theorem 5, we assert that x̂ is an ε-properly efficient solution of the MOP (1).

Theorem 7. Let ε ⩾ 0, and ε ≧ 0. Assume that (x̂, x̂n+1, ŝ+, ŝ−) is an ε-optimal solution of problem (6). If

(1) ε <
p

∑
i=1

µiεi, then x̂ is an ε-properly efficient solution of the MOP (1).

(2) ε <
p

∑
i=1

γiεi and ε ≦ ŝ−, then x̂ is an ε-properly efficient solution of the MOP (1).

Proof. The proof is similar to that of Theorem 6.

4 Conclusion and Future Works
In this research, we considered a novel variant of the min-max method to find approximate efficient solutions in the context of MOPs.

Specifically, we investigate the relationship between the optimal solution of the min-max method and that of the novel variant. We then

introduced an extension of this method that incorporates flexible constraints, enabling us to study conditions that illustrate a deep relationship

between ε-(weakly and properly) efficient solutions within the MOP and ε-optimal solutions in the extensive scalarization problem. In Table

1, we summarize some results obtained from the previous sections for the proposed model. As a future research plan, we intend to focus on

investigating ε-(weakly and properly) efficient solutions using PascolettiSerafini scalarization technique.
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Table 1. Summary of results for an ε-optimal solution of problem (6).

Condition on parameters Implication for x̂ Reference

ε ⩽ min
i=1,...,p

εi x̂ ∈ XεwE Theorem 3(1)

ε ⩽
p

∑
i=1

µiεi, µ ≥ 0 x̂ ∈ XεwE Theorem 3(2)

ε ⩽
p

∑
i=1

γiεi, ε ≦ ŝ−, γ ≥ 0 x̂ ∈ XεwE Theorem 3(3)

Unique ε-optimal solution x̂ ∈ XεE Theorem 4(1)

ε ⩽
p

∑
i=1

µiεi, µ > 0 x̂ ∈ XεE Theorem 4(2)

ε ⩽
p

∑
i=1

γiεi, ε < ŝ−, γ > 0 x̂ ∈ XεE Theorem 4 (3)

0 < ε <
p

∑
i=1

µiεi x̂ ∈ XεE Theorem 5 (1)

0 < ε <
p

∑
i=1

γiεi, ε ≦ ŝ− x̂ ∈ XεE Theorem 5(2)

ε ⩽
p

∑
i=1

µiεi, µ > 0 x̂ ∈ Xε pE Theorem 6(1)

ε ⩽
p

∑
i=1

γiεi, ε < ŝ−, γ > 0 x̂ ∈ Xε pE Theorem 6(2)

0 < ε <
p

∑
i=1

µiεi x̂ ∈ Xε pE Theorem 7(1)

0 < ε <
p

∑
i=1

γiεi, ε ≦ ŝ− x̂ ∈ Xε pE Theorem 7(2)
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