
Global Analysis and Discrete Mathematics
Volume 1, Issue 1, pp. 9–14
ISSN: 2476-5341

Numerical Solutions for Fractional Black-Scholes Option
Pricing Equation

M.H. Akrami · G.H. Erjaee∗

Received: 7 February 2015 / Accepted: 17 July 2015

Abstract In this article we have applied a numerical finite difference method
to solve the Black-Scholes European and American option pricing both pre-
sented by fractional differential equations in time and asset.

Keywords Fractional Black-Schole · Numerical solutions · Finite difference.

Mathematics Subject Classification (2010) 26A33 · 65L12

1 Introduction

In the last decades, differential equations of fractional order have been the fo-
cus of many studies due to their frequent appearance in various applications in
physics, engineering, economics, finance. For instance, see [4,5] and references
therein.
In early 1970, Black and Scholes introduced the famous model for option pric-
ing. They studied the behavior of asset price and derived a partial differential
equation that describes the option value. For this problem in the form of frac-
tional order derivative, the closed form solution is too rare. For American
options in both classical and fractional order derivatives the closed form so-
lutions may not be so easy to obtain [6]. Therefore, we may use appropriate
numerical methods to solve the problem.
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2 Preliminaries and notations

In this section, we give some definitions and lemmas which are used further in
this article.

Definition 1 The Riemann-Liouville fractional integral operator of order α >
0, of function f ∈ L1(R+) is defined as

Iα0+f(t) =
1

Γ (α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ (.) is the Euler gamma function.

Definition 2 The Riemann-Liouville fractional derivative of order α > 0 de-
noted by Dα and defined by

Dαf(x) =
dm

dtm
(Im−αf(x)),

where m− 1 < α ≤ m,m ∈ N and m is the smallest integer greater than α.

3 Finite Difference Methods

The original classical order Black-Scholes model for the value of an option is
described as follows

∂V

∂t
+
σ2S2

2

∂2V

∂S2
+ r(t)S

∂V

∂S
− r(t)V = 0, (S, t) ∈ R+ × (0, T ), (1)

where V (S, t) is the European or American put option at asset price S and at
time t, T is the maturity, r(t) is the risk free interest rate and σ represents the
volatility function of underlying asset. The simplest types of options come in
two main brands, Calls and Puts. In particular, a call option allows its owner
to buy and a put option to sell its underlying asset, at a certain time t for a
fixed strike price K. Therefore, the payoff functions are

Vc(S, t) = max{S −K, 0}, Vp(S, t) = max{K − S, 0},

where Vc(S, t) and Vp(S, t) are the value of the call and put options, respec-
tively. In the last decade, many authors studied existing solutions for Black-
Scholes model (1) in classical form [1,2]. In this article, we consider the fol-
lowing time and asset fractional Black-Schole equation

∂αV

∂tα
+
σ2S2

2

∂βV

∂Sβ
+ rS

∂V

∂S
− rV = 0, 1 < β ≤ 2, 0 < α ≤ 1, (2)
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where ∂αV
∂tα is the Caputo derivative and ∂βV

∂Sβ is the Riemann-Liouville deriva-
tive. The boundary conditions for the European Put are:

V (S, T ) = f(S) = max{K − S, 0},
V (0, t) = Ke−r(T−t), (3)

V (S, 0)→ 0 as S →∞.

Pricing European put option (2) and boundary condition (3) can be solved by
some method such as, Binomial Tree Method, finite difference, Monte-Carlo
Simulation, etc. Here, we have used finite difference method to solve both
European and American options models presented by FDE. Applying this
method to (2), we need initial conditions. To provide this initial condition, we
change time variable t by τ = T − t. In this case, equation (2) will transfer
into the following equation.

τα−1(T − τ)α−1 ∂
αV

∂τα
− σ2S2

2

∂βV

∂Sβ
− rS ∂V

∂S
+ rV = 0. (4)

Now, we discretize equation (4) in the new domain by uniform grid (Sm, τn)
with Sm = mh (m = 0, 1, · · · ,M) and τn = nk (n = 0, 1, · · · , N), where h =
Smax/M , K = T/N and Smax is a maximum value for S, which is sufficiently
large. Customary, the finite difference approximation for derivatives [3,7] are

∂αV

∂τα
=

k−α

Γ (2− α)

n∑
j=1

(V n−j+1
m − V n−jm )(j1−α − (j − 1)1−α) +O(k),

∂V

∂S
=
V nm − V nm−1

h
+O(h),

∂βV

∂Sβ
=

1

hβ

m+1∑
j=1

wβj V
n
m−j+1 +O(k + h),

where wβ0 = 1, wβ1 = −β and wβj = (−1)j β(β−1)···(β−j+1)
j! . Substituting these

approximations in (4) dicsretized system will be

(nk)α−1(T − nk)1−α
k−α

Γ (2− α)

n∑
j=1

(V n−j+1
m − V n−jm )(j1−α − (j − 1)1−α)

− σ2(mh)2

2hβ

m+1∑
j=1

wβj V
n
m−j+1 − rmh

V nm − V nm−1

h
+ rV nm = 0.

Denoting

γn,k =
(nk)α−1(T − nk)1−αkα

Γ (2− α)kα
,

σj = j1−α − (j − 1)1−α,

λm,h =
σ2(mh)2

2hβ
,
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We can rewrite this equation as follows:
if n = 1,

−λm,hV 1
m+1 + (γ1,kσ1 − λm,hwβ1 − r(m− 1))V 1

m

− λm,h
m+1∑
j=3

wβj V
1
m−j+1 + (rm− λm,hwβ2 )V 1

m−1 = γ1,kσ1V
0
m, (5)

if n > 1,

−λm,hV nm+1 + (γn,kσ1 − λm,hwβ1 − r(m− 1))V nm + (rm− λm,hwβ2 )V nm−1

− λm,h
m+1∑
j=3

wβj V
n
m−j+1 = γn,kσ1V

n−1
m − γn,k

n∑
j=2

σj(V
n−j+1
m − V n−jm )

= γn,kσnV
0
m + γn,k

n−1∑
j=1

σjV
n−j
m (2j1−α − (j + 1)1−α − (j − 1)1−α).

(6)

We can summarize equations (5) and (6) as following matrix form:AV 1 = γ1,kσ1V
0 +B1,

AV j+1 = γj,kσjV
0 + γj,k(p1V

j + p2V
j−1 + · · ·+ pjV

1) +Bj ,
V 0 = f.

(7)

where j > 0 and V j = (V j1 , V
j
2 , · · · , V

j
m−1)T ,Bj = V j0 ((r+λ1,h)w2, λ2,hw3, · · · , λm−1,hwm, )

T ,
f = (f(S1), f(S2), · · · , f(Sm−1), )T , pj = 2j1−α− (j + 1)1−α− (j − 1)1−α and
matrix A = (Ai,j)(m−1)×(m−1) is defined as

A =


0 j > i+ 1,
−λi,h j + i+ 1,

γn,kσ1 − λi,hwβ1 − (i− 1)r j = i,

ir − λi,hwβ2 j = i+ 1,

−λi,hwβi−j+1 j < i+ 1,

(8)

Now, the solution of (2) can be obtained by solving (7). For European
option we can invert matrix A to solve the linear system at each time step.
In what follows, we present some numerical examples to show the accuracy of
our proposed method.

Example 1 Consider (2) and the condition (3) with following parameters

K = 50, T = 3, r = 0.05, σ = 0.2,

M = 80, N = 200, Smax = 150. (9)

Implementing our method in a MATLAB code, the results are illustrated in
Figure 1 for fractional European option with different values of α and β.
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Fig. 1 European Put values calculated using the finite difference method for α = 0.9 and
(a) β = 1.9, (b) β = 1.7

4 American Option

The early exercise property of American option can not be solved with tra-
ditional finite difference method. In other words, we can’t solve system (7)
by inverting matrix A. Therefore, finding the early exercise boundary prior to
discretization on underlying asset is necessary in each time step. i.e., we need
to check the possibility of early exercise in an explicit scheme

V nm = max(V nm,K −mh).

However, this is difficult to do with an implicit scheme as computing V nm re-
quires knowing the other V nm. To resolve this difficulty, We can use an iterative
method to solve the linear system. Here, we use successive over relaxation or
SOR iteration method, which was suggested in [8].

We note that the boundary condition for American options is the same as
European options. Since the payoff is the same at expiry for both European
and American options, the boundary condition at t = T is the same. For
the boundary condition at S = 0, as in the European case, we expect that
the payoff will again be K, reduced in time at the risk free rate, so that
V (0, t) = Ke−r(T−t). Finally, for the boundary as S →∞, we expect that the
payoff be zero. This leads us to conclude that the boundary conditions for the
American Put are (3). We use this method in the following example.

Example 2 Consider (2) and the condition (3) under the following parameters;

K = 50, T = 3, r = 0.05, σ = 0.2,

M = 80, N = 200, Smax = 150. (10)

The relaxation parameter in SOR method is ω = 1.2. Implementing our
method in a MATLAB code, the results are illustrated in Figure 2 for fractional
American option with different values of α and β.
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Fig. 2 American Put values calculated using the finite difference method for α = 0.9 and
(a) β = 1.9, (b) β = 1.8

5 Conclusion

We have implemented a numerical finite difference technique to solve the
Black-Scholes European and, in particular, American options presented by
FDE on time and asset. Knowing that fractional Black-Scholes American op-
tions do not have an exact solution, our proposed numerical methods have
shown a good accuracy in presenting examples for different fractional order
derivatives in time and asset.
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