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Abstract This paper presents a new concept in graph theory, focusing on a
connected graph’s edge eccentricity. We define a new matrix, the maximum
edge eccentricity matrix M., (7)), which represents the maximum edge dis-
tance between all pairs of edges in the graph. This matrix is derived from the
graph’s structure and the eccentricity values of its edges. Our work explores
the characteristics of this matrix, including the determination of specific coef-
ficients within its characteristic polynomial, denoted as P(7,v). Furthermore,
we introduce the concept of maximum edge eccentricity energy M. (1) for
connected graphs and provide calculations for well-known graphs. We estab-
lish upper and lower bounds for Ey, (T') and prove that if the maximum edge
eccentricity energy of a graph is rational, it must be an even number.
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1 Introduction

The spectral graph theory explores the relationship between graphs and their
associated matrices. By analyzing the spectra of matrices like the adjacency
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matrix and Laplacian matrix, valuable insights into the graph’s properties
can be revealed. This approach borrows the concept of energy from chem-
istry, where it estimates the total m-electron energy in molecules. In molecular
graphs, carbon atoms are vertices, and carbon-carbon bonds are edges, with
hydrogen atoms omitted. The eigenvalues of these molecular graphs correspond
to electron energy levels. A key focus in Hiickel theory is the total m-electron
energy, which is the sum of individual electron energies in a molecule.

The concept of graph energy, introduced in the 1940s [7], involves analyz-
ing the eigenvalues of a graph’s adjacency matrix. Given a simple graph G

with vertices {v1,va,...,v,}, the adjacency matrix A(G) is an n x n matrix
with entries a;; indicating vertex connections. The eigenvalues of A(G), de-
noted as A1, Ag, ..., A\, are ordered non-increasingly and represent the graph’s

eigenvalues. The energy F(G) is the sum of the absolute values of these eigen-
values [10]. Building on related work [1,14], essential definitions and notations
are presented for further discussion.

Throughout this research, we will consider graphs to be simple, finite, and
connected. A graph 7" = (V| F) is defined as a simple graph, devoid of loops,
multiple edges, or directed edges. We use the standard notation n = |V| and
m = |E| to represent the number of vertices and edges in a graph 7", re-
spectively. The following definitions are introduced, drawing from references
[1,5]. For a given edge e € E its open neighborhood, denoted as N(e), en-
compasses all adjacent edges, while its closed neighborhood is expressed as
N(e) = N(e) U{e}. The degree of an edge e in 1", denoted as d(e), equals the
size of its open neighborhood, |N(e)|. A graph 7 is classified as a k-regular
graph if the degree of every vertex v in 1 is k, i.e., d(v) = k. The edge dis-
tance between two edges e and €’ in 7", denoted as d(e,e’), is the minimum
number of edges connecting them. The eccentricity of an edge e in 7", de-
noted as e(e), is calculated as the maximum edge distance between e and
any other edge e’ in 7', i.e., e(e) = max{d(e,e');e’ € E(T)}. The edge radius
of T, r.(Y), is defined as the minimum eccentricity among all edges in 7,
re(T) = min{e(e) : e € E(T)}, while the edge diameter, D.(7), is the max-
imum eccentricity, D.(7") = max{e(e) : e € E(T)}. Consequently, for every
edge e in 7, we have 1.(T) < e(e) < D(T). An edge e in a connected graph
T is considered a central edge if its eccentricity matches the edge radius, i.e.,
e(e) = re(T). Furthermore, 7 is referred to as an edge self-centered graph if
the eccentricity of every edge e equals both the edge radius and edge diameter,
ie, e(e) =r.(T) = D(T).

In graph theory, we use the symbols K,,, Cy,, Sy, P, and K, ,, to represent
specific types of graphs: complete, cycle, star, path, and complete bipartite
graphs, respectively. We refer to standard literature [3,6,11] for graph theory
foundations and additional references [2,4,8,9,12,13,15,16] for supplementary
concepts. Given a simple graph 7 with n vertices labeled vy, vs, ..., v,, we
define its maximum degree matrix M (Y’), where

g — max{d(v;),d(v;)}, if vv; € E(T),
Y70, otherwise.
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This matrix M (7") exhibits a real symmetric nature with zero traces, imply-
ing that its eigenvalues are real and sum up to zero. We extend this concept
by presenting the maximum edge eccentricity matrix M, (7) for a connected
graph 7', deriving coefficients for its characteristic polynomial P(7,v). Fur-
thermore, we establish the notion of maximum eccentricity energy, denoted as
Epr,, (T), associated with a connected graph 1.

2 Maximum edge eccentricity energy of graph
Definition 1 For an edge e; of T, the edge eccentricity is
e(e;) = max{d(e;,e;);e; € E(T)},

that the edge distance d(e;, e;) in a graph 1" is the minimum number of edges
between e; and e;.

Let (V, E) be a simple connected graph with m edge ey, es, ..., e, and let
e(e;) be the eccentricity of edge e;, i = 1,2,..., m. The Maximum edge eccen-
tricity matrix of 7" defining as,

* * *
€11 €12 " €1m
* * *
€21 €22 " €op
-Zw-ec (T) = . R . y
* * *
€m1 Em2 " Emm

where

. max{e(e;),e(e;)}, if e;,e; are adjacent and i # j,
0, otherwise.

The characteristic polynomial of the maximum edge eccentricity matrix M, (7")
is defined by P(Y,v) = det(vI — M. (Y)). Where I is the identity matrix of
order m. The maximum edge eccentricity eigenvalues of 7" are the eigenval-
ues of M, (7). Since M, (T) is real and symmetric with zero traces, then its
eigenvalues are real numbers with sum equals to zero. We label them in non-
increasing order vy > vy > -+ > vy,. The maximum edge eccentricity energy
of a graph 7 is defined as

By, (T) =) vl
i=1

To clarify this concept, let’s examine a specific example.
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Fig. 1 graph 71

Ezxample 1 let 77 be a graph in figure 1, with 7 edge ey, e2, €3, €4, 5,66 and
e7. The edge distance matrix of 17 is

0220000
2020000
2201001

M, (Y1)=]0010201],
0002020
0000202
0011020

The characteristic polynomial of M,_(1}) is
P(Y1,v) = det(vl — M, (1)) = v" —270° —18* +184v° 42082 — 1121 — 32

The maximum edge eccentricity eigenvalues of 17 are

v = —3.5616, vy = —2.5251, vy = =2,
vy = —0.2159, vs = 0.5616, Ve = 3.3159,
vy = 4.4251.

So, the maximum edge eccentricity energy of 77 is

En,, (T1) = 16.6052.

Properties of maximum edge eccentricity energy

In this section, we obtain the values of some coefficients of the characteristic
polynomial of the maximum edge eccentricity matrix and investigate some
properties of maximum edge eccentricity of a graph 7.
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Theorem 1 Let T be a graph of order m and let
P(Y,v)=cov™ +civ™ o™ 4 - o,

be the characteristic polynomial of maximum edge eccentricity matriz of 1.
Then

(’L) Co = 1,

(ii) ¢, =0,

(iii) co =~ > (ef;)?
1<i<j<m

(iv) cg = —2 > €5ieiE ks

1<i<j<k<m

(v) em = (=1)"det(Me,).

Proof
(i) Directly from the definition of P(Y,v), it follows that ¢y = 1.

(i) Since the trace of M. (Y) is always zero.

(iii) (—1)%co is equal to the sum of determinants of all the 2 x 2 principal
submatrices of M. (Y), that is

i €jj

e
= Z (e:ie;j_e;je;i)

1<i<j<m

= Z €iijj = Z (e7;)?

1<i<j<m 1<i<j<m

=0- Z (e;‘kj)z

1<i<j<m

= Y @)

1<i<j<m

Cy =

1<i<j<m

(iv)
* * *
X €ii Cij Cik
_ * * *
cs = (1) E €5 €55 €
1<i<j<k<m |€; €p; €pk

= - Z [e;'ki(e;j‘ka - ere;k) - e%(%ﬁik - BZiG;k) + ei‘k(e}%e’éj - e?iie}fj)]

1<i<j<k<m
o * k% * * \2 * * \2 * * \2
= - E €ii€j;iCLi T E lesi(€fr)” +efilein)” + eprler;)7]
1<i<j<k<m 1<i<j<k<m
* k% * %%
- E €ii€ikChi — E €ikCrjiCji
1<i<j<k<m 1<i<j<k<m

=—04+0-2 Z efje;‘ke;fk,

1<i<j<k<m
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thus

_ * %k
c3 = —2 g €;;€ikE k-

1<i<j<k<m
(v) The proof is obvious.
Theorem 2 Let vy, vs,..., U, be eigenvalues of the mazimum edge eccentric-
ity of M., (T), then
. m
(i) > vi=0.
i=1
) 2 * \2
(i) > vi =2 > (eij) .
i=1 1<i<j<k<m
m
(i) S v3 =6 > erieineir-
i=1 1<i<j<k<m

Proof The proof is the consequences of binomial expansions and Theorem 1.

Corollary 1 let vy, vs, ...,y be the eigenvalues of maximum edge eccentric-
ity of a graph T, then

(i) If ¥ = K,,, then i vZ=n(n—1)(n-2),

s =
=1

(i) If T = C,, then Z v? =2mD23(T),
i=1
(iti)) If T = Ky, then 3 v} =3 deg(e;) = m.deg(e),

i=1 =1

N =0,and Y=Y uvt=- = Zuf = 0,

i=1 =1 i=1 i=1

(iv) If T = S, then

j=1...,m.
Theorem 3 Let T be an edge eccentricity set of a graph. Then
Ey,, (X)=2> v,

Proof Let v1,v9,...,v, be positive eigenvalues, and the rest of the eigenvalues
non-positive, so

m
EMEE<T) =Z|Vi| =+t +vp)— Wrp1+ Vrg2+ -+ vm),
i=1
implying
.E‘Me,i (T) = 2(V1 +vy+---+ V’r‘)~
Since, v1,v9,--- , v, are algebraic integers, so is their sum. Hence,

B, (1) =2 v
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Theorem 4 Let T be an edge eccentricity set of a complete graph. Then

By, (T)=2) v =4(m—n).

Proof Let v1,v9,...,v, be positive eigenvalues, and the rest of the eigenvalues
non-positive, so

m
EMee(T) :Z|Vi| = (Vl+V2+"‘+V7')_(Vr+1+Vr+2+"'+Vm)a
=1

implying
En, (T)=2(v1 +va+ - +1vp),

Since, v1,19,..., v, are algebraic integers, so is their sum. Thus

By, (Y) =2 vy =2(2(m —n)) = 4(m — n).
Proposition 1 IfT = S, then Ep, (T) = ) |vi| = 0.
i=1

Proof The proof is obvious.

Definition 2 A graph 7" is called an edge self-centered graph if

for every edge e € E(T).

Theorem 5 If T is an edge self-centered k-reqular graph with diameter D.,
then kD, is a mazimum edge eccentricity eigenvalue of T and

En,, (1) = D E(T).

Proof Consider a graph T, which is edge self-centered and k-regular, with a
diameter denoted as D.. For any edge e in T, we have e(e) = D.. From the
definition of the edge eccentricity matriz M., (1), we observe that each row
contains K entries equal to D.. By replacing the first raw of det(vl — M., (7))
by the sum of all raw, we find that (v — kD.) is a factor of this determinant.
Consequently, kD, is established as a maximum edge eccentricity eigenvalue of
T. Given that T is an edge self-centered k-reqular graph, we can deduce from
the definitions of edge adjacency and mazrimum edge eccentricity matrices that
M. (Y) = D.Ac(Y). This leads to the conclusion that if v; is an eigenvalue of
T, then D.v; is a maximum edge eccentricity eigenvalue for all 1 <i < m. As
a result, By, (1) = D E(T).

Corollary 2 If T is an edge self-centered k-reqular graph with n vertices and
diameter D., then Ey;, (T) = E(Y) for n > 3.

Theorem 6 If the maximum edge eccentricity energy of a graph T is rational,
then it must be an even integer.
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Proof Let T be a graph of order m and vi,vs, ..., vy be the mazimum edge ec-
m

centricity eigenvalues of . Since, > v; = 0, then vq,vs, ..., v, be the positive
i=1

eigenvalues of T and the remaining are non-positive. Then
Ey, T)=vi+va+-+ v — W1+ Vrg2 + -+ V)
=2 +va+ - ).

Since, v1,Va, ...,V are algebraic numbers, so is their sum and so must be an
integer if Eyr. , is rational.

ee’

3 Bounds for maximum edge eccentricity energy

In this section, we established upper and lower bounds for the maximum edge
eccentricity energy of a graph.

Theorem 7 Let T be a connected graph of order n > 2 and size m and let
re(T) and D.(Y) be the radius and the diameter of T respectively. Then

Proof Consider the Cauchy-Schwarz inequality and Theorem 2, we get

m m

(Ear, (1) = (S 1ul)’ < (1) (Xw)?

i=1 i=1 =1

<m(2 Y ()

1<i<j<k<m

< m( QZ(% +yi)e’(er)).

m 1 m
Since, e(e) < D (), for everye € E(T) and by > (z; +y;) = 3 > deg(e;) it
i=1 i=1
follows that
m Z dege;
i=1

m m
Now, since (3 |vi])? > Y. v2, it follows that
i=1 i=1
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Since, e(e) > r.(Y) for every e € E(T), then

m

Z dege;.

i=1

B, (T) = re(T)

Fig. 2 graph 7>

Ezxample 2 Let 15 be the graph in figure 2, with 5 edge e, es,e3,e4 and es.
The maximum edge eccentricity matrix of 15 is

01011
10110
M, (T3)=|01011
11101
10110

The characteristic polynomial of M,_(13) is

v -1 0 —1-1
-1 v —-1-10

P(Yy,v) =det(vl — M, (v9))=|0 —1 v —1 —1| =v° -8 — 8%
—1-1-1v -1
10 -1-1v

The maximum edge eccentricity eigenvalues of 75 are

v =2, vy = —1.2361, vy =0,

vy =0, vs = 3.2361.
The maximum edge eccentricity energy of (1) is En,, (12) = 6.4722. In this
graph r.(7) =0, D.(7) =1 and 252 dege; = 16. So,

i=1

0<EM.(T)<+v5x16 = 0<6.4722 < 8.9443.
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4 Conclusion

This research presents a new concept, the maximum edge eccentricity matrix
M, (T), for connected graphs. M, (Y) is derived from the graph’s structure
and edge eccentricities. We have calculated specific coefficients of the char-
acteristic polynomial of M, (7). For a connected edge self-centered k-regular
graph with diameter D., M., is equivalent to D, times the edge adjacency
matrix A.(7). Our focus extends to exploring the mathematical properties of
the maximum edge eccentricity energy Eyps, (T) of graphs. We prove that in
an edge self-centered k-regular graph with diameter D., kD, is a maximum
edge eccentricity eigenvalue. Additionally, we establish upper and lower limits
for Eyy, . Interestingly, we demonstrate that if Ejps,  is rational, it must be
an even integer. The characteristic polynomial of the maximum edge matrix,
as discussed in this paper, offers a valuable tool for investigating Laplacian
and signless Laplacian variations of the issue. This concept is further explored
in the literature, specifically in the study of digraph characteristic polynomi-
als. Moreover, the maximum edge energy concept presented here could find
practical use in chemistry and other fields.
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