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Abstract

This paper presents a new concept in graph theory, focusing on a connected graph’s edge eccentricity. We define a new matrix,

the maximum edge eccentricity matrix Mee(ϒ), which represents the maximum edge distance between all pairs of edges in

the graph. This matrix is derived from the graph’s structure and the eccentricity values of its edges. Our work explores the

characteristics of this matrix, including the determination of specific coefficients within its characteristic polynomial, denoted as

P(ϒ,ν). Furthermore, we introduce the concept of maximum edge eccentricity energy Mee(ϒ) for connected graphs and provide

calculations for well-known graphs. We establish upper and lower bounds for EMee
(ϒ) and prove that if the maximum edge

eccentricity energy of a graph is rational, it must be an even number.
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1 Introduction
The spectral graph theory explores the relationship between graphs and their associated matrices. By analyzing the spectra of matrices like

the adjacency matrix and Laplacian matrix, valuable insights into the graph’s properties can be revealed. This approach borrows the concept

of energy from chemistry, where it estimates the total π-electron energy in molecules. In molecular graphs, carbon atoms are vertices, and

carbon-carbon bonds are edges, with hydrogen atoms omitted. The eigenvalues of these molecular graphs correspond to electron energy

levels. A key focus in Hückel theory is the total π-electron energy, which is the sum of individual electron energies in a molecule.

The concept of graph energy, introduced in the 1940s [7], involves analyzing the eigenvalues of a graph’s adjacency matrix. Given a

simple graph G with vertices {v1,v2, . . . ,vn}, the adjacency matrix A(G) is an n× n matrix with entries ai j indicating vertex connections.

The eigenvalues of A(G), denoted as λ1,λ2, . . . ,λn, are ordered non-increasingly and represent the graph’s eigenvalues. The energy E(G) is

the sum of the absolute values of these eigenvalues [10]. Building on related work [1, 14], essential definitions and notations are presented

for further discussion.

Throughout this research, we will consider graphs to be simple, finite, and connected. A graph ϒ = (V,E) is defined as a simple graph,

devoid of loops, multiple edges, or directed edges. We use the standard notation n = |V | and m = |E| to represent the number of vertices and

edges in a graph ϒ, respectively. The following definitions are introduced, drawing from references [1, 5]. For a given edge e ∈ E its open
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neighborhood, denoted as N(e), encompasses all adjacent edges, while its closed neighborhood is expressed as N(e) = N(e)∪{e}. The

degree of an edge e in ϒ, denoted as d(e), equals the size of its open neighborhood, |N(e)|. A graph ϒ is classified as a k-regular graph if

the degree of every vertex v in ϒ is k, i.e., d(v) = k. The edge distance between two edges e and e′ in ϒ, denoted as d(e,e′), is the minimum

number of edges connecting them. The eccentricity of an edge e in ϒ, denoted as e(e), is calculated as the maximum edge distance between e

and any other edge e′ in ϒ, i.e., e(e) = max{d(e,e′);e′ ∈ E(ϒ)}. The edge radius of ϒ, re(ϒ), is defined as the minimum eccentricity among

all edges in ϒ, re(ϒ) = min{e(e) : e ∈ E(ϒ)}, while the edge diameter, De(ϒ), is the maximum eccentricity, De(ϒ) = max{e(e) : e ∈ E(ϒ)}.

Consequently, for every edge e in ϒ, we have re(ϒ) ≤ e(e) ≤ De(ϒ). An edge e in a connected graph ϒ is considered a central edge if its

eccentricity matches the edge radius, i.e., e(e) = re(ϒ). Furthermore, ϒ is referred to as an edge self-centered graph if the eccentricity of

every edge e equals both the edge radius and edge diameter, i.e., e(e) = re(ϒ) = De(ϒ).
In graph theory, we use the symbols Kn,Cn,Sn,Pn and Km,n to represent specific types of graphs: complete, cycle, star, path, and

complete bipartite graphs, respectively. We refer to standard literature [3, 6, 11] for graph theory foundations and additional references

[2, 4, 8, 9, 12, 13, 15, 16] for supplementary concepts. Given a simple graph ϒ with n vertices labeled v1,v2, . . . ,vn, we define its maximum

degree matrix M(ϒ), where

di j =

max{d(vi),d(v j)}, if viv j ∈ E(ϒ),

0, otherwise.

This matrix M(ϒ) exhibits a real symmetric nature with zero traces, implying that its eigenvalues are real and sum up to zero. We extend

this concept by presenting the maximum edge eccentricity matrix Mee(ϒ) for a connected graph ϒ, deriving coefficients for its characteristic

polynomial P(ϒ,ν). Furthermore, we establish the notion of maximum eccentricity energy, denoted as EMee
(ϒ), associated with a connected

graph ϒ.

2 Maximum Edge Eccentricity Energy of a Graph
Definition 1. For an edge ei of ϒ, the edge eccentricity is

e(ei) = max{d(ei,e j);e j ∈ E(ϒ)},

that the edge distance d(ei,e j) in a graph ϒ is the minimum number of edges between ei and e j.

Let ϒ(V,E) be a simple connected graph with m edge e1,e2, . . . ,em and let e(ei) be the eccentricity of edge ei, i = 1,2, . . . ,m. The

Maximum edge eccentricity matrix of ϒ defining as,

Mee(ϒ) =


e∗11 e∗12 · · · e∗1m

e∗21 e∗22 · · · e∗2m
...

...
. . .

...

e∗m1 e∗m2 · · · e∗mm

 ,

where

e∗i j =

max{e(ei),e(e j)}, if ei,e j are adjacent and i ̸= j,

0, otherwise.

The characteristic polynomial of the maximum edge eccentricity matrix Mee(ϒ) is defined by P(ϒ,ν) = det(νI −Mee(ϒ)). Where I is

the identity matrix of order m. The maximum edge eccentricity eigenvalues of ϒ are the eigenvalues of Mee(ϒ). Since Mee(ϒ) is real

and symmetric with zero traces, then its eigenvalues are real numbers with sum equals to zero. We label them in non-increasing order

ν1 ≥ ν2 ≥ ·· · ≥ νm. The maximum edge eccentricity energy of a graph ϒ is defined as

EMee
(ϒ) =

m

∑
i=1

|νi|.

To clarify this concept, let’s examine a specific example.
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Figure 1. Graph ϒ1

Example 1. let ϒ1 be a graph in figure 1, with 7 edge e1,e2,e3,e4,e5,e6 and e7. The edge distance matrix of ϒ1 is

Mee(ϒ1) =



0 2 2 0 0 0 0

2 0 2 0 0 0 0

2 2 0 1 0 0 1

0 0 1 0 2 0 1

0 0 0 2 0 2 0

0 0 0 0 2 0 2

0 0 1 1 0 2 0


,

The characteristic polynomial of Mee(ϒ1) is

P(ϒ1,ν) = det(νI −Mee(ϒ1)) = ν7 −27ν5 −18ν4 +184ν3 +208ν2 −112ν −32.

The maximum edge eccentricity eigenvalues of ϒ1 are

ν1 =−3.5616, ν2 =−2.5251, ν3 =−2, ν4 =−0.2159,

ν5 = 0.5616, ν6 = 3.3159, ν7 = 4.4251.

So, the maximum edge eccentricity energy of ϒ1 is

EMee
(ϒ1) = 16.6052.

3 Properties Of Maximum Edge Eccentricity Energy
In this section, we obtain the values of some coefficients of the characteristic polynomial of the maximum edge eccentricity matrix and

investigate some properties of maximum edge eccentricity of a graph ϒ.

Theorem 1. Let ϒ be a graph of order m and let

P(ϒ,ν) = c0νm + c1νm−1 + c2νm−2 + · · ·+ cm,

be the characteristic polynomial of maximum edge eccentricity matrix of ϒ. Then

(i) c0 = 1,

(ii) c1 = 0,

(iii) c2 =− ∑
1≤i< j≤m

(e∗i j)
2,
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(iv) c3 =−2 ∑
1≤i< j<k≤m

e∗i je
∗
ike∗jk,

(v) cm = (−1)mdet(Mee).

Proof.

(i) Directly from the definition of P(ϒ,ν), it follows that c0 = 1.

(ii) Since the trace of Mee(ϒ) is always zero.

(iii) (−1)2c2 is equal to the sum of determinants of all the 2×2 principal submatrices of Mee(ϒ), that is

c2 = ∑
1≤i< j≤m

∣∣∣∣∣e∗ii e∗i j

e∗ji e∗j j

∣∣∣∣∣= ∑
1≤i< j≤m

(e∗iie
∗
j j − e∗i je

∗
ji)

= ∑
1≤i< j≤m

e∗iie
∗
j j − ∑

1≤i< j≤m
(e∗i j)

2

= 0− ∑
1≤i< j≤m

(e∗i j)
2

=− ∑
1≤i< j≤m

(e∗i j)
2.

(iv)

c3 = (−1)3 ∑
1≤i< j<k≤m

∣∣∣∣∣∣∣∣
e∗ii e∗i j e∗ik
e∗ji e∗j j e∗jk
e∗ki e∗k j e∗kk

∣∣∣∣∣∣∣∣
=− ∑

1≤i< j<k≤m
[e∗ii(e

∗
j je

∗
kk − e∗k je

∗
jk)− e∗i j(e

∗
jie

∗
kk − e∗kie

∗
jk)+ e∗ik(e

∗
jie

∗
k j − e∗kie

∗
j j)]

=− ∑
1≤i< j<k≤m

e∗iie
∗
j je

∗
kk + ∑

1≤i< j<k≤m
[e∗ii(e

∗
jk)

2 + e∗j j(e
∗
ik)

2 + e∗kk(e
∗
i j)

2]− ∑
1≤i< j<k≤m

e∗i je
∗
jke∗ki − ∑

1≤i< j<k≤m
e∗ike∗k je

∗
ji

=−0+0−2 ∑
1≤i< j<k≤m

e∗i je
∗
ike∗jk,

thus

c3 =−2 ∑
1≤i< j<k≤m

e∗i je
∗
ike∗jk.

(v) The proof is obvious.

Theorem 2. Let ν1,ν2, . . . ,νm be eigenvalues of the maximum edge eccentricity of Mee(ϒ), then

(i)
m
∑

i=1
νi = 0.

(ii)
m
∑

i=1
ν2

i = 2 ∑
1≤i< j<k≤m

(e∗i j)
2.

(iii)
m
∑

i=1
ν3

i = 6 ∑
1≤i< j<k≤m

e∗i je
∗
ike∗jk.

Proof. The proof is the consequences of binomial expansions and Theorem 1.

Corollary 1. let ν1,ν2, . . . ,νm be the eigenvalues of maximum edge eccentricity of a graph ϒ, then
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(i) If ϒ = Kn, then
m
∑

i=1
ν2

i = n(n−1)(n−2),

(ii) If ϒ =Cn, then
m
∑

i=1
ν2

i = 2mD2
e(ϒ),

(iii) If ϒ = Km,n, then
m
∑

i=1
ν2

i =
m
∑

i=1
deg(ei) = m �deg(e),

(iv) If ϒ = Sn, then
m
∑

i=1
ν2

i = 0, and
m
∑

i=1
ν3

i =
m
∑

i=1
ν4

i = · · ·=
m
∑

i=1
ν j

i = 0, j = 1, . . . ,m.

Theorem 3. Let ϒ be an edge eccentricity set of a graph. Then

EMee
(ϒ) = 2∑νr.

Proof. Let ν1,ν2, . . . ,νr be positive eigenvalues, and the rest of the eigenvalues non-positive, so

EMee
(ϒ) =

m

∑
i=1

|νi|= (ν1 +ν2 + · · ·+νr)− (νr+1 +νr+2 + · · ·+νm),

implying

EMee
(ϒ) = 2(ν1 +ν2 + · · ·+νr).

Since, ν1,ν2, · · · ,νr are algebraic integers, so is their sum. Hence,

EMee
(ϒ) = 2∑νr.

Theorem 4. Let ϒ be an edge eccentricity set of a complete graph. Then

EMee
(ϒ) = 2∑νr = 4(m−n).

Proof. Let ν1,ν2, . . . ,νr be positive eigenvalues, and the rest of the eigenvalues non-positive, so

EMee
(ϒ) =

m

∑
i=1

|νi|= (ν1 +ν2 + · · ·+νr)− (νr+1 +νr+2 + · · ·+νm),

implying

EMee
(ϒ) = 2(ν1 +ν2 + · · ·+νr),

Since, ν1,ν2, . . . ,νr are algebraic integers, so is their sum. Thus

EMee
(ϒ) = 2∑νr = 2(2(m−n)) = 4(m−n).

Proposition 1. If ϒ = Sn, then EMee
(ϒ) =

m
∑

i=1
|νi|= 0.

Proof. The proof is obvious.

Definition 2. A graph ϒ is called an edge self-centered graph if

e(e) = re(ϒ) = De(ϒ),

for every edge e ∈ E(ϒ).
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Theorem 5. If ϒ is an edge self-centered k-regular graph with diameter De, then kDe is a maximum edge eccentricity eigenvalue of ϒ and

EMee
(ϒ) = DeE(ϒ).

Proof. Consider a graph ϒ, which is edge self-centered and k-regular, with a diameter denoted as De. For any edge e in ϒ, we have e(e) =De.

From the definition of the edge eccentricity matrix Mee(ϒ), we observe that each row contains K entries equal to De. By replacing the first

raw of det(νI −Mee(ϒ)) by the sum of all raw, we find that (ν − kDe) is a factor of this determinant. Consequently, kDe is established as a

maximum edge eccentricity eigenvalue of ϒ. Given that ϒ is an edge self-centered k-regular graph, we can deduce from the definitions of

edge adjacency and maximum edge eccentricity matrices that Mee(ϒ) = DeAe(ϒ). This leads to the conclusion that if νi is an eigenvalue of

ϒ, then Deνi is a maximum edge eccentricity eigenvalue for all 1 ≤ i ≤ m. As a result, EMee
(ϒ) = DeE(ϒ).

Corollary 2. If ϒ is an edge self-centered k-regular graph with n vertices and diameter De, then EMee
(ϒ) = E(ϒ) for n > 3.

Theorem 6. If the maximum edge eccentricity energy of a graph ϒ is rational, then it must be an even integer.

Proof. Let ϒ be a graph of order m and ν1,ν2, . . . ,νm be the maximum edge eccentricity eigenvalues of ϒ. Since,
m
∑

i=1
νi = 0, then

ν1,ν2, . . . ,νr be the positive eigenvalues of ϒ and the remaining are non-positive. Then

EMee
(ϒ) = ν1 +ν2 + · · ·+νr − (νr+1 +νr+2 + · · ·+νm)

= 2(ν1 +ν2 + · · ·+νr).

Since, ν1,ν2, . . . ,νr are algebraic numbers, so is their sum and so must be an integer if EMee
, is rational.

4 Bounds for Maximum Edge Eccentricity Energy
In this section, we established upper and lower bounds for the maximum edge eccentricity energy of a graph.

Theorem 7. Let ϒ be a connected graph of order n ≥ 2 and size m and let re(ϒ) and De(ϒ) be the radius and the diameter of ϒ respectively.

Then

re(ϒ)

√
m

∑
i=1

degei ≤ EMee
(ϒ)≤ De(ϒ)

√
m

m

∑
i=1

degei.

Proof. Consider the Cauchy-Schwarz inequality and Theorem 2, we get

(EMee
(ϒ))2 =

( m

∑
i=1

|νi|
)2 ≤

( m

∑
i=1

1
)( m

∑
i=1

νi
)2

≤ m
(

2 ∑
1≤i< j<k≤m

(e∗i j)
2)

≤ m
(

2
m

∑
i=1

(xi + yi)e2(ei)
)
.

Since, e(e)≤ De(ϒ), for every e ∈ E(ϒ) and by
m
∑

i=1
(xi + yi) =

1
2

m
∑

i=1
deg(ei) it follows that

EMee
(ϒ)≤ De(ϒ)

√
m

m

∑
i=1

degei.

Now, since (
m
∑

i=1
|νi|)2 ≥

m
∑

i=1
ν2

i , it follows that

(EMee
(ϒ))2 ≥ 2

m

∑
i=1

(xi + yi)e2(ei).
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Figure 2. graph ϒ2

Since, e(e)≥ re(ϒ) for every e ∈ E(ϒ), then

EMee
(ϒ)≥ re(ϒ)

√
m

∑
i=1

degei.

Example 2. Let ϒ2 be the graph in figure 2, with 5 edge e1,e2,e3,e4 and e5. The maximum edge eccentricity matrix of ϒ2 is

Mee(ϒ2) =


0 1 0 1 1

1 0 1 1 0

0 1 0 1 1

1 1 1 0 1

1 0 1 1 0


The characteristic polynomial of Mee(ϒ2) is

P(ϒ2,ν) = det(νI −Mee(υ2)) =

∣∣∣∣∣∣∣∣∣∣∣∣

ν −1 0 −1 −1

−1 ν −1 −1 0

0 −1 ν −1 −1

−1 −1 −1 ν −1

−1 0 −1 −1 ν

∣∣∣∣∣∣∣∣∣∣∣∣
= ν5 −8ν3 −8ν2.

The maximum edge eccentricity eigenvalues of ϒ2 are

ν1 =−2, ν2 =−1.2361, ν3 = 0, ν4 = 0, ν5 = 3.2361.

The maximum edge eccentricity energy of (ϒ2) is EMee
(ϒ2) = 6.4722. In this graph re(ϒ) = 0, De(ϒ) = 1 and

5
∑

i=1
degei = 16. So,

0 ≤ EMee(ϒ)≤
√

5×16 ⇒ 0 ≤ 6.4722 ≤ 8.9443.

5 Conclusion
This research presents a new concept, the maximum edge eccentricity matrix Mee(ϒ), for connected graphs. Mee(ϒ) is derived from the

graph’s structure and edge eccentricities. We have calculated specific coefficients of the characteristic polynomial of Mee(ϒ). For a connected

edge self-centered k-regular graph with diameter De, Mee is equivalent to De times the edge adjacency matrix Ae(ϒ). Our focus extends to

exploring the mathematical properties of the maximum edge eccentricity energy EMee
(ϒ) of graphs. We prove that in an edge self-centered

k-regular graph with diameter De, kDe is a maximum edge eccentricity eigenvalue. Additionally, we establish upper and lower limits for
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EMee
. Interestingly, we demonstrate that if EMee

is rational, it must be an even integer. The characteristic polynomial of the maximum edge

matrix, as discussed in this paper, offers a valuable tool for investigating Laplacian and signless Laplacian variations of the issue. This

concept is further explored in the literature, specifically in the study of digraph characteristic polynomials. Moreover, the maximum edge

energy concept presented here could find practical use in chemistry and other fields.
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